- Previous Lecture:
- Branching (if, elseif, else, end)
- Relational operators (<, >=, ==, , ~=, ..., etc.)
- Today's Lecture:
- Logical operators (\&\&, ||, ~), "short-circuiting"
- More branching—nesting
- Top-down design
- Announcements:
- Project I (PI) due today at IIpm
- Submit real .m files (plain text, not from a word processing software such as Microsoft Word)
- Please fill out beginning-of-semester survey, see course website

Things to know about the if construct

- At most one branch of statements is executed
- There can be any number of elseif clauses
- There can be at most one else clause
- The else clause must be the last clause in the construct
- The else clause does not have a condition (boolean expression)

Consider the quadratic function

$$
q(x)=x^{2}+b x+c
$$

on the interval $[L, R]$:
-Is the function strictly increasing in $[L, R]$?
\square Which is smaller, $q(L)$ or $q(R)$?

- What is the minimum value of $q(x)$ in $[L, R]$?

Minimum is at L, R, or $x c$

$$
q(x)=x^{2}+b x+c \quad \circ x_{c}=-b / 2
$$

Modified Problem 3

Write a code fragment that prints
"yes" if xc is in the interval and "no"
if it is not.

So what is the requirement?

\% Determine whether xc is in
\% [L,R]
xc = -b/2;
if

disp('Yes')

else

disp(' No')

end

So what is the requirement?

\% Determine whether xc is in
\% [L,R]
xc = -b/2;
if L<=xc \&\& xc<=R

disp('Yes')

else
disp(${ }^{\prime N o}$ ')
end

The value of a boolean expression is either true or false.

$$
(L<=X c) \quad \& \& \quad(X C<=R)
$$

This (compound) boolean expression is made up of two (simple) boolean expressions. Each has a value that is either true or false.

Connect boolean expressions by boolean operators:

and	or	not	
\&\&	$\\|$	\sim	

Logical operators

\&\& logical and: Are both conditions true?
E.g., we ask "is $L \leq x_{c}$ and $x_{c} \leq R$?"

In our code: $\mathrm{L}<=\mathrm{xc}$ \&\& $\mathrm{xc}<=\mathbf{R}$

Logical operators

\&\& logical and: Are both conditions true?

|| logical or: Is at least one condition true?
E.g., we can ask if x_{c} is outside of $[L, R]$,
i.e., "is $x_{c}<L$ or $R<x_{c}$?"

In code: $\mathrm{xc}<\mathrm{L}$ || $\mathrm{R}<\mathrm{xc}$

Logical operators

\&\& logical and: Are both conditions true?

|| logical or: Is at least one condition true?
E.g., we can ask if x_{c} is outside of $[L, R]$,

In code: $\mathrm{xc}<\mathrm{L}$ || R<xc
~ logical not: Negation
E.g., we can ask if x_{c} is not outside $[L, R]$. In code: $\sim(x c<L \| R<x c)$

The logical AND operator: \&\&

The logical AND operator: \&\&

The logical OR operator: ||

The logical OR operator: ||

The logical NOT operator: ~

F
T

The logical NOT operator:

F

T
F

"Truth table"

X, Y represent boolean expressions.
E.g., $\quad d>3.14$

X	Y	$\mathrm{X} \mathrm{\&} \mathrm{\& Y}$ "and"	$\mathrm{X} \\| \mathrm{Y}$ "or"	$\sim y$ "not"
F	F			
F	T			
T	F			
T	T			

"Truth table"

> X, Y represent boolean expressions.
> E.g., $\quad d>3.14$

X	Y	$\mathrm{X} \& \& \mathrm{Y}$ "and"	$\mathrm{X} \\| \mathrm{Y}$ "or"	$\sim y$ "not"
F	F	F	F	T
F	T	F	T	F
T	F	F	T	T
T	T	T	T	F

"Truth table"
Matlab uses $\mathbf{0}$ to represent false, 1 to represent true

X	Y	$\mathrm{X} \& \& \mathrm{Y}$ "and"	$\mathrm{X} \\| \mathrm{Y}$ "or"	$\sim y$ "not"
0	0	0	0	1
0	1	0	1	0
1	0	0	1	1
1	1	1	1	0

Logical operators "short-circuit"

Logical operators "short-circuit"

Entire expression is false since the first part is false

A \&\& condition shortcircuits to false if the left operand evaluates to false.

A || condition shortcircuits to true if the left operand evaluates to true.

Always use logical operators to connect simple boolean expressions

Why is it wrong to use the expression

$$
L<=x c<=R
$$

for checking if X_{c} is in $[L, R]$?

Example: Suppose L is $5, R$ is 8 , and $x c$ is 10 . We know that 10 is not in [5,8], but the expression L <= $x c$ <= R gives...

Variables a, b, and c have whole number values. True or false: This fragment prints "Yes" if there is a right triangle with side lengths a, b, and c and prints "No" otherwise.

$$
\begin{aligned}
& \text { if } a^{\wedge} 2+b^{\wedge} 2==c^{\wedge} 2 \\
& \quad \text { disp('Yes') } \\
& \text { else }
\end{aligned}
$$

$$
\text { disp(}{ }^{\prime N o} \text { ') }
$$

end

a = 5;

b $=3$;
c = 4;
if $\left(a^{\wedge} 2+b^{\wedge} 2==c^{\wedge} 2\right)$
disp('Yes')
else
disp('No')
end

This fragment prints "No" even though we have a right triangle!

$$
\begin{aligned}
& \begin{array}{l}
a=5 ; \\
b=3 ; \\
c=4 ; \\
\text { if }\left(\left(a^{\wedge} 2+b^{\wedge} 2==c^{\wedge} 2\right) \quad \|\right. \\
\quad\left(a^{\wedge} 2+c^{\wedge} 2==b^{\wedge} 2\right) \ldots \\
\quad \operatorname{disp}\left({ }^{\prime} Y e s^{\prime}\right) \\
\text { else } \\
\quad \operatorname{disp}\left({ }^{\prime} \mathrm{No}^{\prime}\right) \\
\text { end }
\end{array} . \begin{array}{l}
\left.\left.b^{\wedge} 2+c^{\wedge} 2==a^{\wedge} 2\right)\right)
\end{array} \\
&
\end{aligned}
$$

Consider the quadratic function

$$
q(x)=x^{2}+b x+c
$$

on the interval $[L, R]$:
-Is the function strictly increasing in $[L, R]$?
\square Which is smaller, $q(L)$ or $q(R)$?
-What is the minimum value of $q(x)$ in $[L, R]$?

$$
q(x)=x^{2}+b x+c \quad \circ x_{c}=-b / 2
$$

Conclusion

If x_{c} is between L and R

Then min is at X_{c}

Otherwise

Min value is at one of the endpoints

Start with pseudocode

If $x c$ is between L and R

Min is at $x c$

Otherwise

Min is at one of the endpoints

We have decomposed the problem into three pieces! Can choose to work with any piece next: the if-else construct/condition, min at $x c$, or min at an endpoint

Set up structure first: if-else, condition

if L<=xc \&\& xc<=R

Then min is at $x c$
else

Min is at one of the endpoints

end

Now refine our solution-in-progress. I'll choose to work on the if-branch next

Refinement: filled in detail for task "min at xc"
if $L<=x c$ \&\& $x c<=R$ \% min is at xc qMin= $x c^{\wedge 2}+b^{*} x c+c$;
else

Min is at one of the endpoints
end

Continue with refining the solution... else-branch next

Refinement: detail for task "min at an endpoint"

```
if L<=xc && xc<=R
    % min is at xc
    qMin= xc^2 + b*xc + c;
else
    % min is at one of the endpoints
    if % xc left of bracket
        % min is at L
    else % xc right of bracket
        % min is at R
    end
end
```

Continue with the refinement, i.e., replace comments with code

Refinement: detail for task "min at an endpoint"

```
if L<=xc && xc<=R
    % min is at xc
    qMin= xc^2 + b*xc + c;
else
    % min is at one of the endpoints
    if xc < L
        qMin= L^2 + b*L + c;
    else
        qMin= R^2 + b*R + c;
    end
end
```

Final solution (given b,c,L,R,xc)
if $L<=x c$ \&\& $x c<=R$
\% min is at Pc $q M i n=x c^{\wedge} 2+b * x c+c ;$
else
\% min is at one of the endpoints
if $x c$ <
qMin= $\mathrm{L}^{\wedge} 2+\mathrm{b}^{*} \mathrm{~L}+\mathrm{c}$;
else
quin= $\mathbf{R}^{\wedge} \mathbf{2}+b^{*} R+c ;$
end
end
An if-statement catch-
appear within a branch kind of
just
statement

quadMin.m

quadMinGraph.m

Notice that there are 3 alternatives \rightarrow can use elseif!

```
if L<=xc && xc<=R
    % min is at xc
    qMin= xc^2+b*xc+c;
else
    % min at one endpt
    if xc < L
        qMin= L^2+b*L+c;
    else
        qMin= R^2+b*R+c;
    end
end
```


Top-Down Design

An algorithm is an idea. To use an algorithm you must choose a programming language and implement the algorithm.

Top-Down Design

An algorithm is an idea. To use an algorithm you must choose a programming language and implement the algorithm.

If $x c$ is between L and R
Then \min value is at $x c$

Otherwise
Min value is at one of the endpoints
if $L<=x c$ \&\& $x c<=R$ \% min is at xc
else \% min is at one of the endpoints
end
if $L<=x c$ \&\& $x c<=R$ \% min is at Xc
else
\% min is at one of the endpoints
end
if $L<=x c$ \&\& $x c<=R$ \% min is at xc qMin= $x c^{\wedge 2 ~}+b^{*} x c+c ;$
else
\% min is at one of the endpoints
end
if $L<=x c$ \&\& $x c<=R$ \% min is at xc qMin= $x^{\wedge} \wedge 2+b^{*} x c+c ;$ else
\% min is at one of the endpoints
end

```
if L<=xc && xc<=R
    % min is at xc
    qMin= xc^2 + b*xc + c;
else
    % min is at one of the endpoints
    if xc < L
    else
    end
end
```

```
if L<=xc && xc<=R
    % min is at xc
    qMin= xc^2 + b*xc + c;
else
    % min is at one of the endpoints
    if xc < L
        qMin= L^2 + b*L + c;
    else
        qMin= R^2 + b*R + c;
    end
end
```


Does this program work?

score= input(‘Enter score: ');
if score>55

> disp(‘D')
elseif score>65
disp(${ }^{\prime}{ }^{\prime}$ ')
A: yes
elseif score>80
disp($\left.{ }^{\prime} B^{\prime}\right)$

elseif score>93

$$
\text { disp(} \left.{ }^{\prime} A^{\prime}\right)
$$

else
disp('Not good...')
end

