- Previous Lecture (and lab):
- Variables \& assignment
- Built-in functions
- Input \& output
- Good programming style (meaningful variable names; use comments)
- Today's Lecture:
- Branching (conditional statements)
- So far, all the statements in our scripts are executed in order
- We do not have a way to specify that some statements should be executed only under some condition
- We need a new language construct...
- What are the critical points?

- Is the function strictly increasing in $[L, R]$?
-Which is smaller, $q(L)$ or $q(R)$?
-What is the minimum value of $q(x)$ in $[L, R]$?

Write a code fragment that prints "yes" if $q(x)$ increases across the interval and "no" if it does not.

```
% Quadratic q(x) = x^2 + bx + c
```

% Quadratic q(x) = x^2 + bx + c
b = input('Enter b: ');
b = input('Enter b: ');
c = input('Enter c: ');
c = input('Enter c: ');
L = input('Enter L: ');
L = input('Enter L: ');
R = input('Enter R: ');
R = input('Enter R: ');
% Determine whether q increases
% Determine whether q increases
% across [L,R]
% across [L,R]
xc = -b/2;
xc = -b/2;

So what is the requirement?

```
% Determine whether q increases
% across [L,R]
xc = -b/2;
\begin{tabular}{|c|c|}
\hline \multirow[b]{2}{*}{if} & Relational Operators \\
\hline & \multirow[t]{3}{*}{\begin{tabular}{l}
< Less than \\
> Greater than \\
<= Less than or equal to \\
>= Greater than or equal to \\
== Equal to \\
~= Not equal to
\end{tabular}} \\
\hline fprintf('Yes \({ }^{\text {n' }}\) ) & \\
\hline else & \\
\hline & \\
\hline
\end{tabular}


\section*{Problem 2}

Write a code fragment that prints
"qleft is smaller"
if \(q(L)\) is smaller than \(q(R)\).
If \(q(R)\) is smaller print
"qright is smaller."
\begin{tabular}{l}
\(\quad\) Algorithm v0 \\
\begin{tabular}{l} 
calculate \(q(L)\) \\
calculate \(q(R)\) \\
If \(q(L)<q(R)\) \\
print "qleft is smaller" \\
Otherwise \\
print "qright is smaller"
\end{tabular} \\
\hline
\end{tabular}

\section*{Algorithm v0.1}
calculate \(x_{c}\)
If distance \(\overline{X_{c} L}\) is smaller than distance \(\overline{X_{c} R}\) print "qleft is smaller"

Otherwise print "qright is smaller"
```

% Which is smaller, q(L) or q(R)?
xc= -b/2; % x at center
if (abs(xc-L) == abs(xc-R))
disp('qleft and qright are equal')
elseif (abs(xc-L) < abs(xc-R))
disp('qleft is smaller')
else
disp('qright is smaller')
end

```
```

% Which is smaller, q(L) or q(R)?
qL= L*L + b*L + c; % q(L)
qR= R*R + b*R + c; % q(R)
if (qL == qR)
disp('qleft and qright are equal')
fprintf('q value is %f\n', qL)
elseif (qL < qR)
disp('qleft is smaller')
else
disp('qright is smaller')
end

```
```

% Is q(L) close to q(R)?
tol= 1e-4; % tolerance
qL= L*L + b*L + c
qR= R*R + b*R + c
if (abs(qL-qR) < tol)
disp('qleft and qright similar')
end
Name an important parameter and define
it with a comment!

```

```

The if construct
if boolean expression l
statements to execute if expression\ is true
elseif boolean expression2
statements to execute if expression\ is false
but expression2 is true
:
else
statements to execute if all previous conditions
are false
end
Can have any number of elseif branc
Can have any number of elseif branch

```
                    - 3

\section*{Modified Problem 3}

Write a code fragment that prints "yes" if xc is in the interval and "no" if it is not.

The value of a boolean expression is either true or false.
\[
(L<=x c) \& \& \quad(x c<=R)
\]

This (compound) boolean expression is made up of two (simple) boolean expressions. Each has a value that is either true or false.

Connect boolean expressions by boolean operators:
\begin{tabular}{ccc} 
and & or & not \\
\(\& \&\) & \(\|\) & \(\sim\)
\end{tabular}
\begin{tabular}{|l|}
\hline Modified Problem 3 \\
Write a code fragment that prints \\
"yes" if \(x c\) is in the interval and "no" \\
if it is not.
\end{tabular}

Things to know about the if construct

■ \(\qquad\) branch of statements is executed
- There can be \(\qquad\) elseif clauses
- There can be \(\qquad\) else clause
- The else clause \(\qquad\) in the construct
- The else clause \(\qquad\) (boolean expression)
```

So what is the requirement?
% Determine whether xc is in
% [L,R]
xc = -b/2;
if

```
\(\qquad\)
```

 disp('Yes')
 else
 disp('No')
 end
    ```
    Logical operators
    \&\& logical and: Are both conditions true?
        E.g., we ask "is \(L \leq x_{c}\) and \(x_{c} \leq R\) ?"
        In our code: \(\mathrm{L}<=\mathrm{xc}\) \& \& \(\mathrm{xc}<=\mathbf{R}\)
    || logical or: Is at least one condition true?
        E.g., we can ask if \(x_{c}\) is outside of \([L, R]\),
        i.e., "is \(x_{c} \leq L\) or \(R \leq x_{c}\) ?"
        In code: \(\mathrm{xc}<=\mathrm{L}| | \mathrm{R}<=\boldsymbol{x} \mathbf{c}\)
~ logical not: Negation
    E.g., we can ask if \(X_{c}\) is not outside \([L, R]\).
    In code: \(\sim(x c<=L| | R<=x c)\)```

