- Previous Lecture (and lab):
- Variables \& assignment
- Built-in functions
- Input \& output
- Good programming style (meaningful variable names; use comments)
- Today's Lecture:
- Branching (conditional statements)

Announcements:

- Project I (PI) due Thurs, 2/3, at IIpm
- Pay attention to Academic Integrity
- TAs: See any TA for help, not just your section instructor
- Consulting
- Matlab consultants at ACCEL Green Rm (Engrg Library 2 ${ }^{\text {nd }}$ fl. computing facility)
- 5-IOpm Sunday to Thursday
- Discussion this week takes place in the lab, Upson B7. Attend the section in which you are enrolled
- Just added CSIII2? Tell your discussion TA to add you in CSIII2 CMS (and tell CSIIIO to drop your from their CMS)

Quick review

- Variable
- A named memory space to store a value
- Assignment operator: =
- Let x be a variable that has a value. To give variable y the same value as x, which statement below should you write?

$$
x=y \quad \text { or } \quad y=x
$$

- Script (program)
- A sequence of statements saved in an m-file
- ; (semi-colon)
- Suppresses printing of the result of assignment statement
- So far, all the statements in our scripts are executed in order
- We do not have a way to specify that some statements should be executed only under some condition
- We need a new language construct...

Consider the quadratic function

$$
q(x)=x^{2}+b x+c
$$

on the interval $[L, R]$:

Consider the quadratic function

$$
q(x)=x^{2}+b x+c
$$

on the interval $[L, R]$:

- Is the function strictly increasing in $[L, R]$?
-Which is smaller, $q(L)$ or $q(R)$?
-What is the minimum value of $q(x)$ in $[L, R]$?
- What are the critical points?

- What are the critical points?
- End points: $x=L, x=R$
- $\left\{x \mid q^{\prime}(x)=0\right\}$

- What are the critical points?
- End points: $x=L, x=R$
- $\left\{x \mid q^{\prime}(x)=0\right\}$

$$
\begin{aligned}
& q(x)=x^{2}+b x+c \\
& q^{\prime}(x)=2 x+b \\
& q^{\prime}\left(x_{c}\right)=0 \Rightarrow x_{c}=-\frac{b}{2}
\end{aligned}
$$

Problem I

Write a code fragment that prints
"yes" if $q(x)$ increases across the interval and "no" if it does not.
\% Quadratic $q(x)=x^{\wedge} 2+b x+c$
b = input('Enter b: ');
c = input('Enter c: ');
L = input('Enter L: ');
R = input('Enter R: ');
\% Determine whether q increases
\% across [L,R]
xc = -b/2;

The Situation

$$
q(x)=x^{2}+b x+c \quad \bullet x_{c}=-b / 2
$$

Does $q(x)$ increase across [L,R]?

$$
q(x)=x^{2}+b x+c \quad \circ x_{c}=-b / 2
$$

So what is the requirement?

So what is the requirement?

Determine whether q increases
 disp('Yes')
 fprintf('Yes\n')

Consider the quadratic function

$$
q(x)=x^{2}+b x+c
$$

on the interval $[L, R]$:

- Is the function strictly increasing in $[L, R]$?
\square Which is smaller, $q(L)$ or $q(R)$?
-What is the minimum value of $q(x)$ in $[L, R]$?

Problem 2

Write a code fragment that prints
"qleft is smaller"
if $q(L)$ is smaller than $q(R)$. If $q(R)$ is smaller print "qright is smaller."

Algorithm v0

calculate $q(L)$
calculate $q(R)$
If $q(L)<q(R)$
print "qleft is smaller"
otherwise
print "qright is smaller"

Algorithm v0.1

calculate x_{0}
If distance $\overline{X_{c} L}$ is smaller than distance $\overline{X_{c} R}$ print "qleft is smaller"
otherwise
print "aright is smaller"

Do these two fragments do the same thing?
\% given x, y
if $x>y$
disp('alpha')
else

disp('beta')
 end

> \% given x, y
> if $y>x$
> \quad disp('beta')
> else
disp('alpha')
end

Algorithm v1
calculate x_{c}
If distance $\overline{X_{c} L}$ is smaller than distance $\overline{X_{c} R}$ print "qleft is smaller"
otherwise print "aright is smaller or equals qleft"

Algorithm v2

calculate x_{0}
If distance $\overline{x_{c} L}$ is same as distance $\overline{x_{c} R}$
print "qleft and aright are equal"
Otherwise, if $\overline{X_{c} L}$ is shorter than $\overline{X_{c} R}$
print "qleft is smaller"
otherwise
print "qright is smaller"

\% Which is smaller, q(L) or q(R)?

xc= -b/2; \% x at center
if (abs(xc-L) == abs(xc-R)) disp('qleft and qright are equal') elseif (abs(xc-L) < abs(xc-R)) disp('qleft is smaller') else disp('qright is smaller') end

\% Which is smaller, q(L) or q(R)?

qL= L*L + b*L + c; \% $q(L)$
$q R=R^{*} \mathbf{R}+b^{*} \mathbf{R}+\mathbf{c} ; \% q(R)$
if (qL == qR)
disp('qleft and qright are equal')
elseif (qL < qR)
disp('qleft is smaller')
else
disp('qright is smaller')
end
\% Which is smaller, $q(L)$ or $q(R) ?$
qL= L*L + b*L + c; $\% ~ q(L)$
$q \mathbf{R}=\mathbf{R}^{*} \mathbf{R}+\mathbf{b}^{*} \mathbf{R}+\mathbf{c} ; \quad \% \mathrm{q}(\mathrm{R})$
if (qL == qR)
disp('qleft and qright are equal')
fprintf('q value is $\left.\% f \backslash n^{\prime}, ~ q L\right)$
elseif (qL < qR)
disp('qleft is smaller')
else
disp('qright is smaller')
end

Consider the quadratic function

$$
q(x)=x^{2}+b x+c
$$

on the interval $[L, R]$:

What if you only want to know if $q(L)$ is close to $q(R)$?
\% Is $q(L)$ close to $q(R)$?
tol= 1e-4; \% tolerance
qL= L*L + b*L + c
qR= R*R + b*R + c
if (abs(qL-qR) < tol) disp('qleft and qright similar')
end
Name an important parameter and define it with a comment!

Simple if construct

if boolean expression

statements to execute if expression is true
else
statements to execute if expression is false
end

Even simpler if construct

if boolean expression

statements to execute if expression is true
end

The if construct

if boolean expression 1
statements to execute if expressionl is true
elseif boolean expression2
statements to execute if expression is false
but expression2 is true
$:$

else

statements to execute if all previous conditions are false
end
Can have any number of elseif branches

Things to know about the if construct branch of statements is executed

- There can be \qquad elseif clauses
- There can be \qquad else clause
- The else clause in the construct
- The else clause
(boolean expression)

Things to know about the if construct

- At most one branch of statements is executed
- There can be any number of elseif clauses
- There can be at most one else clause
- The else clause must be the last clause in the construct
- The else clause does not have a condition (boolean expression)

Consider the quadratic function

$$
q(x)=x^{2}+b x+c
$$

on the interval $[L, R]$:

- Is the function strictly increasing in $[L, R]$?
-Which is smaller, $q(L)$ or $q(R)$?
-What is the minimum value of $q(x)$ in $[L, R]$?

Modified Problem 3

Write a code fragment that prints
"yes" if xc is in the interval and "no"
if it is not.

Is XC in the interval [L,R]?

$$
q(x)=x^{2}+b x+c \quad \circ x_{c}=-b / 2
$$

So what is the requirement?

\% Determine whether xc is in \% [L,R]
 xc = -b/2;

if

disp('Yes')

else

disp(' No')

end

So what is the requirement?

\% Determine whether xc is in
 \% [L,R]
 Xc = -b/2;

if $L<=x c$ \&\& $x c<=R$
disp('Yes')
else
disp('No')
end

The value of a boolean expression is either true or false.

$$
(L<=x c) \& \& \quad(x c<=R)
$$

This (compound) boolean expression is made up of two (simple) boolean expressions. Each has a value that is either true or false.

Connect boolean expressions by boolean operators:

Logical operators

\&\& logical and: Are both conditions true?
E.g., we ask "is $L \leq x_{c}$ and $x_{c} \leq R$?" In our code: $\mathrm{L}<=x c$ \&\& $\mathrm{xc}<=\mathbf{R}$

Logical operators

\&\& logical and: Are both conditions true?

|| logical or: Is at least one condition true?
E.g., we can ask if x_{c} is outside of $[L, R]$,
i.e., "is $x_{c} \leq L$ or $R \leq x_{c}$?" In code: $\mathrm{xc}<=\mathrm{L}| | \mathrm{R}<=\mathrm{xc}$

Logical operators

\&\& logical and: Are both conditions true?

|| logical or: Is at least one condition true?
E.g., we can ask if x_{c} is outside of $[L, R]$,

In code: $\mathrm{xc}<=\mathrm{L}$ || $\mathrm{R}<=\mathrm{xc}$
~ logical not: Negation
E.g., we can ask if X_{c} is not outside $[L, R]$. In code: $\sim(x c<=L| | R<=x c)$

Logical operators

\&\& logical and: Are both conditions true?
E.g., we ask "is $L \leq x_{c}$ and $x_{c} \leq R$?"

In our code: $\mathrm{L}<=\mathrm{xc}$ \&\& $\mathrm{xc}<=\mathrm{R}$
|| logical or: Is at least one condition true?
E.g., we can ask if X_{c} is outside of $[L, R]$,
i.e., "is $x_{c} \leq L$ or $R \leq x_{c}$?"

In code: $x c<=L$ || $R<=x c$
~ logical not: Negation
E.g., we can ask if x_{C} is not outside $[L, R]$.

In code: $\sim(x c<=L \| R<=x c)$

