Announcements

- P6 due today at I pm
- Final exam:

May 6, 2010

- Thurs, 5/12, 9am, Barton East (indoor field)
- Please fill out course evaluation on-line, see "Exercise 15"
- Regular office/consulting hours end tonight. Revised hours next week.
- Pick up papers during consulting hours at Carpenter
- Read announcements on course website!

Lecture 28

Previous Lecture:

- Recursion review
- Efficiency
- Today's Lecture:
 - Simulation—Google "page rank"
 - Optimization—the traveling salesperson problem

Quantifying Importance

How do you rank web pages for importance given that you know the link structure of the Web, i.e., the in-links and out-links for each web page?

A related question:

How does a deleted or added link on a webpage affect its "rank"?

Lecture 28

Background

May 6, 2010

Index all the pages on the Web from I to n. (n is around ten billion.)

The PageRank algorithm orders these pages from "most important" to "least important."

It does this by analyzing links, not content.

Key ideas

May 6, 2010

May 6, 2010

- There is a random web surfer—a special random walk
- The surfer has some random "surfing" behavior—a transition probability matrix
- The transition probability matrix comes from the link structure of the web—a connectivity matrix

Lecture 28

 Applying the transition probability matrix → Page Rank


```
The general case
function w = Update(P,v)
% Update state vector v based on transition
% probability matrix P to give state vector w
n = length(v);
w = zeros(n,1);
for i=1:n
   for j=1:n
      w(i) = w(i) + P(i,j)*v(j);
   end
end
```


Connectivity	0	0	0	0	0	0	1	1
	1	0	0	1	0	0	0	0
Matrix	1	0	1	0	0	1	0	1
	0	0	0	0	1	0	0	0
G	1	0	1	0	0	0	0	1
	0	0	1	0	0	0	0	1
	0	0	1	0	0	0	0	0
	0	1	0	1	0	0	0	0
		_	-	-	-	-	_	-
Transition	0	0	0	0	0	0	?	?
	?	0	0	?	0	0	0	0
Probability Matrix derived from Connectivity Matrix	?	0	?	0	0	?	0	?
	0	0	0	0	?	0	0	0
	?	0	?	0	0	0	0	?
	0	0	?	0	0	0	0	?
	0	0	?	0	0	0	0	0
	0	?	0	?	0	0	0	0
May 6, 2010			Lecture 28					22

Connectivity	0	0	0	0	0	0	1	1	
Connectivity	1	0	0	1	0	0	0	0	
Matrix	1	0	1	0	0	1	0	1	
	0	0	0	0	1	0	0	0	
G	1	0	1	0	0	0	0	1	
	0	0	1	0	0	0	0	1	
	o	õ	1	õ	0	ő	ő	ō	
Transition Probability	0	1	0	1	0	0	0	-	
	0	1	0	1	0	0	0	0	
A. 0		_	_	_	_				I.
	0	0	0	0	0	0	?	?	
B. 1/8	(?)	0	0	?	0	0	0	0	
	?	0	?	0	0	?	0	?	
C. 1/3	0	0	0	0	?	0	0	0	
P	?	0	?	0	0	0	0	?	
D. I	0	0	?	0	0	0	0	?	
E. rand(I)	ŏ	ŏ	?	ŏ	õ	õ	õ	0	
	o	?	0	?	0	o	0	o	
	0	- <u>-</u>		- 1	U	0	0	-	
May 6, 2010			Lecture 28					23	

Lecture 28

May 6, 2010

Stationary vector represents how "popular" the pages are → PageRank							
				-			
0.5723	0.	8911 6	4				
0.8206	0.	8206 2	2				
0.7876	0.	7876 3	3				
0.2609	0.	5723 1	6				
0.2064	0.	4100 8	8				
0.8911	0.	2609 4	1				
0.2429	0.	2429 7	7				
0.4100	0.	2064 5	5				
statVec	sor	ted idx	r pR				
May 6, 2010	Lec	ture 28	2	7			

<pre>[sorted, idx] = sort(-statVec); for k= 1:length(statVec) j = idx(k); % index of kth largest pR(j) = k; end</pre>							
0.5723		-0.8911	6		4		
0.8206		-0.8206	2		2		
0.7876		-0.7876	3		3		
0.2609		-0.5723	1		6		
0.2064		-0.4100	8		8		
0.8911		-0.2609	4		1		
0.2429		-0.2429	7		7		
0.4100		-0.2064	5		5		
statVec so		sorted	idx	:	pR		
May 6, 2010		Lecture 28			28		

There are m outlinks. Choose one at random. Click on the link.

May 6, 2010

What if there are no outlinks?

May 6, 2010

What we learned...

May 6, 2010

- Develop/implement algorithms for problems
- Develop programming skills
 - Design, implement, document, test, and debug
- Programming "tool bag"
 - Functions for reducing redundancy
 - Control flow (if-else; loops)
 - Recursion
 - Data structures
 - Graphics
 - File handling

May 6. 2010

What we learned... (cont'd)

- Applications and concepts
 - Image and sound
 - Sorting and searching—you should know the algorithms covered

Lecture 28

- Divide-and-conquer strategies
- Approximation and error
- Simulation

May 6, 2010

Computational effort and efficiency

Final Exam

- Thurs 5/12, 9-11:30am, Barton East
- Covers entire course; some emphasis on material after Prelim 3
- Closed-book exam, no calculators
- Bring student ID card
- Check for announcements on webpage:
 - Study break office/consulting hours
 - Review session time and location
 - Review questions

May 6, 2010

List of potentially useful functions