Announcements

- P6 due today at 11pm
- Final exam:
 - Thurs, 5/12, 9am, Barton East (indoor field)
- Please fill out course evaluation on-line, see "Exercise 15"
- Regular office/consulting hours end tonight.
 Revised hours next week.
- Pick up papers during consulting hours at Carpenter
- Read announcements on course website!

May 6, 2010

1 ----- 00

Previous Lecture:

- Recursion review
- Efficiency

Today's Lecture:

- Simulation—Google "page rank"
- Optimization—the traveling salesperson problem

Quantifying Importance

How do you rank web pages for importance given that you know the link structure of the Web, i.e., the in-links and out-links for each web page?

A related question:

How does a deleted or added link on a webpage affect its "rank"?

May 6, 2010

Lecture 28

Background

Index all the pages on the Web from I to n. (n is around ten billion.)

The PageRank algorithm orders these pages from "most important" to "least important."

It does this by analyzing links, not content.

May 6, 2010

Lecture 28

Key ideas

- There is a random web surfer—a special random walk
- The surfer has some random "surfing" behavior—a transition probability matrix
- The transition probability matrix comes from the link structure of the web—a connectivity matrix
- Applying the transition probability matrix → Page Rank

May 6, 2010

Lecture 28


```
The general case

function w = Update(P,v)
% Update state vector v based on transition
% probability matrix P to give state vector w
n = length(v);
w = zeros(n,1);
for i=1:n
    for j=1:n
        w(i) = w(i) + P(i,j)*v(j);
    end
end
```

```
To obtain the stationary vector...

function [w,err]= StatVec(P,v,tol,kMax)
% Iterate to get stationary vector w
w = Update(P,v);
err = max(abs(w-v));
k = 1;
while k<kMax && err>tol
    v = w;
    w = Update(P,v);
    err = max(abs(w-v));
    k = k+1;
end
```



```
Connectivity (G) \rightarrow Transition Probability (P)

[n,n] = size(G);
P = zeros(n,n);
for j=1:n
P(:,j) = G(:,j)/sum(G(:,j));
end
```

```
To obtain the stationary vector...

function [w,err]= StatVec(P,v,tol,kMax)
% Iterate to get stationary vector w
w = Update(P,v);
err = max(abs(w-v));
k = 1;
while k<kMax && err>tol
v = w;
w = Update(P,v);
err = max(abs(w-v));
k = k+1;
end
```

```
Stationary vector represents how "popular" the pages are
                → PageRank
 0.5723
                  0.8911
                            6
                                       4
                  0.8206
 0.8206
                                       2
                            2
 0.7876
                  0.7876
                            3
                                       3
 0.2609
                  0.5723
                            1
                                       6
 0.2064
                  0.4100
                            8
                                       8
 0.8911
                  0.2609
                            4
                                       1
 0.2429
                  0.2429
                            7
                                       7
                            5
                                       5
 0.4100
                  0.2064
                           idx
 statVec
                  sorted
                                      pR
```

```
[sorted, idx] = sort(-statVec);
   for k= 1:length(statVec)
     j = idx(k); % index of kth largest
     pR(j) = k;
   end
0.5723
                -0.8911
                           6
                                      4
0.8206
                -0.8206
                           2
                                      2
                -0.7876
0.7876
                           3
                                      3
                -0.5723
                                      6
0.2609
                           1
                                      8
0.2064
                -0.4100
                           8
                                      1
                -0.2609
                            4
0.8911
                                      7
0.2429
                -0.2429
                           7
0.4100
                -0.2064
                           5
                                      5
statVec
                 sorted
                           idx
                                      рR
 May 6, 2010
                   Lecture 28
```

The random walk idea gets the transitional probabilities from connectivity. So how to deal with dead ends?

Repeat:

You are on a webpage.

There are m outlinks.

Choose one at random.

Click on the link.

What if there are no outlinks?

Quantifying Importance

How do you rank web pages for importance given that you know the link structure of the Web, i.e., the in-links and out-links for each web page?

A related question:

How does a deleted or added link on a webpage affect its "rank"?

6, 2010 Lecture 28

Optimization

- Find the "best" of something
 - the shortest path
 - the most cost efficient production line
 - the lowest-risk investment strategy
- There is a search (solution) space
- There is some kind of objective function
- There are usually constraints
- Usually willing to accept suboptimal solution if it is "good enough" and is cheap to compute

May 6, 2010 Lecture 28 37

A heuristic is a computational rule-of-thumb that points us towards optimality but without any guarantee that optimality will actually be achieved.

• A heuristic for the TSP:

From the current location, choose to visit the nearest unvisited city

Organization of the TSP program

% Visit n cities, starting from city 1
Put cities 2:n in unvisited list
for k= 2:n

Find nearest unvisited city, c

Put city c in the tour path

Remove city c from unvisited list
end
Return to city 1

What we learned...

Develop/implement algorithms for problems
Develop programming skills
Design, implement, document, test, and debug
Programming "tool bag"
Functions for reducing redundancy
Control flow (if-else; loops)
Recursion
Data structures
Graphics

• File handling

What we learned... (cont'd)
Applications and concepts

Image and sound
Sorting and searching—you should know the algorithms covered
Divide-and-conquer strategies
Approximation and error
Simulation
Computational effort and efficiency

Final Exam

- Thurs 5/12, 9-11:30am, Barton East
- Covers entire course; some emphasis on material after Prelim 3
- Closed-book exam, no calculators
- Bring student ID card
- Check for announcements on webpage:
 - Study break office/consulting hours
 - Review session time and location
 - Review questions
 - List of potentially useful functions

May 6 2010 Lecture 29 49