Announcements

- P6 due today at IIpm
- Final exam:
- Thurs, 5/I2, 9am, Barton East (indoor field)
- Please fill out course evaluation on-line, see "Exercise I5"
- Regular office/consulting hours end tonight. Revised hours next week.
- Pick up papers during consulting hours at Carpenter
- Read announcements on course website!

May 6,2010
Lecture 28

Quantifying Importance

How do you rank web pages for importance given that you know the link structure of the Web, i.e., the in-links and out-links for each web page?

A related question:
How does a deleted or added link on a webpage affect its "rank"?

May 6,2010
Lecture 28

- There is a random web surfer-a special random walk
- The surfer has some random "surfing" behavior-a transition probability matrix
- The transition probability matrix comes from the link structure of the web-a connectivity matrix
- Applying the transition probability matrix \rightarrow Page Rank

May 6, 2010

- Previous Lecture:
- Recursion review
- Efficiency
- Today's Lecture:
- Simulation-Google "page rank"
- Optimization-the traveling salesperson problem

Background

Index all the pages on the Web from I to n. (n is around ten billion.)

The PageRank algorithm orders these pages from "most important" to "least important."

It does this by analyzing links, not content.

May 6, 2010
Lecture 28

A 3-node network with specified transition probabilities

A special random walk
Suppose there are a 1000 people on each node.

At the sound of a whistle they hop to another node in accordance with the "outbound" probabilities.

After 100 iterations			
	T=99	$\mathrm{T}=100$	
Node 1	1142.85	1142.85	
Node 2	1357.14	1357.14	
Node 3	500.00	500.00	
Appears to reach a steady state			
Call this the stationary vector			
$\operatorname{may}_{6} 2010$	Lecture 28		13

State Vector:
describes the state at each node at a specific time
$\left.\left.\left.\begin{array}{c}\mathrm{T}=0 \\ 1000 \\ 1000\end{array}\right) \quad \begin{array}{c}\mathrm{T}=1 \\ 1000 \\ 1300 \\ 700\end{array}\right) \quad \begin{array}{c}\mathrm{T}=2 \\ 1120 \\ 1300 \\ 580\end{array}\right)$

May 6, 2010
ecture 28


```
The general case
function w = Update(P,v)
% Update state vector v based on transition
% probability matrix P to give state vector w
n = length(v);
w = zeros(n,1);
for i=1:n
    for j=1:n
        w(i) = w(i) + P(i,j)*v(j);
        end
end
```

```
To obtain the stationary vector...
function [w,err]= StatVec(P,v,tol,kMax)
% Iterate to get stationary vector w
w = Update(P,v);
err = max(abs(w-v));
k = 1;
while k<kMax && err>tol
    v = w;
    w = Update(P,v);
        err = max(abs(w-v));
        k = k+1;
end
    Lecture 28
```


Connectivity Matrix	0	0	0	0	0	0	1	1
	1	0	0	1	0	0	0	0
	1	0	1	0	0	1	0	1
	0	0	0	0	1	0	0	0
	1	0	1	0	0	0	0	1
	0	0	1	0	0	0	0	1
	0	0	1	0	0	0	0	0
Transition Probability	0	1	0	1	0	0	0	0
A. 0	000000							
B. $1 / 8$		0	0	?	0	0	0	0
		0	?	0	0	?	0	?
D. 1		0	0	0	?	0	0	0
	?	0	?	0	0	0	0	?
	0		?	0	0	0	0	?
E. rand(1)	0	0	?	0	0	0	0	0
	0	?	0	?	0	0	0	0
May 62010			Leture 28					${ }^{23}$

Connectivity (G) \rightarrow Transition Probability (P)
$[\mathrm{n}, \mathrm{n}]=\operatorname{size}(\mathrm{G})$;
$\mathrm{P}=\operatorname{zeros}(\mathrm{n}, \mathrm{n})$;
for $\mathrm{j}=1: \mathrm{n}$
$P(:, j)=G(:, j) / s u m(G(:, j)) ;$
end

May 6.2010
Lecture 28

Stationary vector represents how "popular" the pages are \rightarrow PageRank			
0.5723	0.8911	6	4
0.8206	0.8206	2	2
0.7876	0.7876	3	3
0.2609	0.5723	1	6
0.2064	0.4100	8	8
0.8911	0.2609	4	1
0.2429	0.2429	7	7
0.4100	0.2064	5	5
statVec May 6, 2010	sorted Lecture 28	idx	pR

The random walk idea gets the transitional probabilities from connectivity. So how to deal with dead ends?

Repeat:
You are on a webpage.
There are m outlinks.
Choose one at random.
Click on the link.
What if there are no outlinks?

The random walk idea gets transitional probabilities from connectivity. Can modify the random walk to deal with dead ends.

Repeat:
You are on a webpage.
If there are no outlinks
Pick a random page and go there. an unfair coin
else In practice, an uneads works
Flip an unfair coin. with prob .85 he well.
Click on arandom outlink and go there.
else
Pick a random page and go there.
end
end
This results in a different transitional probability matrix.

Simulation vs. optimization

- Simulation: Specify input, run it through the model, and get result.
- Optimization is the reverse problem: Specify the result that you want-your objectives-and try to find what "starting values" or actions are needed

May 6, 2010 Lecture 28 36

Quantifying Importance

How do you rank web pages for importance given that you know the link structure of the Web, i.e., the in-links and out-links for each web page?

A related question:
How does a deleted or added link on a webpage affect its "rank"?

Optimization

- Find the "best" of something
- the shortest path
- the most cost efficient production line
- the lowest-risk investment strategy
- There is a search (solution) space
- There is some kind of objective function
- There are usually constraints
- Usually willing to accept suboptimal solution if it is "good enough" and is cheap to compute

May 6, 2010
Lecture 28

Enumerate all the possibilities and pick the shortest

A heuristic is a computational rule-of-thumb that points us towards optimality but without any guarantee that optimality will actually be achieved.

- A heuristic for the TSP:

From the current location, choose to visit the nearest unvisited city

```
Organization of the TSP program
% Visit n cities, starting from city 1
Put cities 2:n in unvisited list
for k= 2:n
    Find nearest unvisited city, c
    Put city c in the tour path
    Remove city c from unvisited list
end
Return to city 1
```

```
What we learned..
    - Develop/implement algorithms for problems
    - Develop programming skills
    - Design, implement, document, test, and debug
- Programming "tool bag"
    - Functions for reducing redundancy
    - Control flow (if-else; loops)
    - Recursion
    - Data structures
    - Graphics
    - File handling
    May 6, 2010
    Lecture 28
```


Final Exam

- Thurs 5/I2, 9-11:30am, Barton East
- Covers entire course; some emphasis on material after Prelim 3
- Closed-book exam, no calculators
- Bring student ID card
- Check for announcements on webpage:
- Study break office/consulting hours
- Review session time and location
- Review questions
- List of potentially useful functions

May 6,2010
Lecture 28

