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Previous Lecture:
Comparing different sorting algorithms
Recursion

Today’s Lecture:
Recursion review
Efficiency: dealing with “expensive” function evaluation
A model to quantify importance: Google “Page Rank”

Announcement:
Discussion this week in the computer lab (UP B7)
P6 due Thursday at 11pm
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Why is mesh generation a divide-&-conquer process?

Let’s draw this graphic
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A “level-1” partition of the triangle

(obtained by connecting the midpoints of the sides of the original triangle)

Now do the same partitioning (connecting midpts) on each corner (white) 
triangle to obtain the “level-2” partitioning
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The “level-2” partition of the triangle
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The “level-4” partition of the triangle
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The basic operation at each level

if the triangle is small
Don’t subdivide and just color it yellow.

else
Subdivide: 
Connect the side midpoints;
color the interior triangle magenta;
apply same process to each outer triangle.

end
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function MeshTriangle(x,y,L)
% x,y are 3-vectors that define the vertices of a triangle.
% Draw level-L partitioning.  Assume hold is on.

if L==0
% Recursion limit reached; no more subdivision required.
fill(x,y,'y')  % Color this triangle yellow

else
% Need to subdivide:  determine the side midpoints; connect
% midpts to get “interior triangle”; color it magenta.

% Apply the process to the three "corner" triangles...

end
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Expensive function evaluations

Consider the execution of a program that is dominated 
by multiple calls to an expensive-to-evaluate function 
(e.g., climate simulation models)

Can try to improve efficiency by dealing with the 
expensive function evaluations

Time spent on evaluating a function Time for other program tasks

Total time
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Dealing with expensive function evaluations

Can the function code be improved?
Can we do fewer function evaluations?
Can we pre-compute and store specific function values 
so that during the main program execution the program 
can just look up the values?

Consider function f(x). If there are many function calls and few 
distinct values of x, can get substantial speedup
Only speeds up main program execution—it still takes time to 
do the pre-computation

f(x)

x
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What are some issues and potential problems with the 
“table look-up” strategy?

x    f(x)
1 1.01
2 2.67
3 5.71
4 9.12
5 7.98
: :

Pre-calculate and 
store these values 
(e.g., in a vector H)
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Quantifying Importance

How do you rank web pages for importance given 
that you know the link structure of the Web, i.e., 
the in-links and out-links for each web page?

A related question:
How does a deleted or added link on a webpage 
affect its “rank”?
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Background

Index all the pages on the Web from 1 to n.  (n is 
around ten billion.)

The PageRank algorithm orders these pages from 
“most important” to “least important.”

It does this by analyzing links, not content.
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Key ideas

There is a random web surfer—a special random 
walk
The surfer has some random “surfing”
behavior—a transition probability matrix
The transition probability matrix comes from the 
link structure of the web—a connectivity matrix
Applying the transition probability matrix 
Page Rank
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A 3-node network with specified transition probabilities 
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A special random walk

Suppose there are a 1000 people on each node.

At the sound of a whistle they hop to another 
node in accordance with the “outbound”
probabilities.

For now we assume we know these 
probabilities.  Later we will see how 
to get them.
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At Node 1
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At Node 1
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At Node 2
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At Node 3
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State Vector:
describes the state at each node at a specific time

1000

1000

1000

1000

1300

700

1120

1300

580

T=0 T=1 T=2
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After 100 iterations

T=99         T=100

Node 1    1142.85      1142.85

Node 2    1357.14      1357.14

Node 3     500.00       500.00

Appears to reach a steady state

Call this the stationary vector
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Formula for the new state vector

W(1) = P(1,1)*v(1) + P(1,2)*v(2) + P(1,3)*v(3)
W(2) = P(2,1)*v(1) + P(2,2)*v(2) + P(2,3)*v(3)
W(3) = P(3,1)*v(1) + P(3,2)*v(2) + P(3,3)*v(3)

P
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v is the old state vector
w is the updated state vector

P(i,j) is 
probability of 
hopping to node
i from node j
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The general case

function w = Update(P,v)
% Update state vector v based on transition
% probability matrix P to give state vector w
n = length(v); 
w = zeros(n,1);
for i=1:n

for j=1:n
w(i) = w(i) + P(i,j)*v(j);

end
end
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To obtain the stationary vector…

function [w,err]= StatVec(P,v,tol,kMax)
% Iterate to get stationary vector w
w = Update(P,v);
err = max(abs(w-v));
k = 1;
while k<kMax && err>tol

v = w;
w = Update(P,v);
err = max(abs(w-v));
k = k+1;

end
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Stationary vector indicates importance:   2 1 3
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Repeat:
You are on a webpage.
There are m outlinks, 

so choose one at 
random.

Click on the link.

Repeat:
You are on an island.
According to the 

transitional 
probabilities,

go to another island.

A random walk on the web Random island hopping

Use the link structure of the 
web to figure out the 
transitional probabilities! (Assume no dead ends for 

now;  we deal with them later.) 
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0   0   0   0   0   0   1   1
1   0   0   1   0   0   0   0
1   0   1   0   0   1   0   1
0   0   0   0   1   0   0   0
1   0   1   0   0   0   0   1
0   0   1   0   0   0   0   1
0   0   1   0   0   0   0   0
0   1   0   1   0   0   0   0

Connectivity 
Matrix

G

G(i,j) is 1 if there is a link on 
page j to page i.

(I.e., you can get to i from j.)
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0   0   0   0   0   0   1   1
1   0   0   1   0   0   0   0
1   0   1   0   0   1   0   1
0   0   0   0   1   0   0   0
1   0   1   0   0   0   0   1
0   0   1   0   0   0   0   1
0   0   1   0   0   0   0   0
0   1   0   1   0   0   0   0

Connectivity 
Matrix

0   0   0   0   0   0   ?   ? 
?   0   0   ?   0   0   0   0
?   0   ?   0   0   ?   0   ? 
0   0   0   0   ?   0   0   0
?   0   ?   0   0   0   0   ? 
0   0   ?   0   0   0   0   ? 
0   0   ?   0   0   0   0   0
0   ?   0   ?   0   0   0   0

Transition 
Probability 
Matrix 
derived from 
Connectivity 
Matrix

G

P
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0   0   0   0   0   0   1   1
1   0   0   1   0   0   0   0
1   0   1   0   0   1   0   1
0   0   0   0   1   0   0   0
1   0   1   0   0   0   0   1
0   0   1   0   0   0   0   1
0   0   1   0   0   0   0   0
0   1   0   1   0   0   0   0

Connectivity 
Matrix

0   0   0   0   0   0   ?   ? 
?   0   0   ?   0   0   0   0
?   0   ?   0   0   ?   0   ? 
0   0   0   0   ?   0   0   0
?   0   ?   0   0   0   0   ? 
0   0   ?   0   0   0   0   ? 
0   0   ?   0   0   0   0   0
0   ?   0   ?   0   0   0   0

G

P

Transition Probability

A.  0

B.  1/8

C.  1/3

D.  1

E.  rand(1)
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Connectivity (G) Transition Probability (P)

[n,n] = size(G);
P = zeros(n,n);
for j=1:n

P(:,j) = G(:,j)/sum(G(:,j));
end
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To obtain the stationary vector…

function [w,err]= StatVec(P,v,tol,kMax)
% Iterate to get stationary vector w
w = Update(P,v);
err = max(abs(w-v));
k = 1;
while k<kMax && err>tol

v = w;
w = Update(P,v);
err = max(abs(w-v));
k = k+1;

end
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Stationary vector represents how “popular” the pages are 
PageRank

0.5723
0.8206
0.7876
0.2609
0.2064
0.8911
0.2429
0.4100

0.8911
0.8206
0.7876
0.5723
0.4100
0.2609
0.2429
0.2064

6
2
3
1
8
4
7
5

4
2
3
6
8
1
7
5

sorted pRstatVec idx
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0.5723
0.8206
0.7876
0.2609
0.2064
0.8911
0.2429
0.4100

-0.8911
-0.8206
-0.7876
-0.5723
-0.4100
-0.2609
-0.2429
-0.2064

6
2
3
1
8
4
7
5

4
2
3
6
8
1
7
5

sorted pRstatVec idx

[sorted, idx] = sort(-statVec);
for k= 1:length(statVec)

j = idx(k);  % index of kth largest
pR(j) = k;

end
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The random walk idea gets the transitional probabilities 
from connectivity.  So how to deal with dead ends?

Repeat:
You are on a webpage.
There are m outlinks.
Choose one at random.
Click on the link.

What if there are no outlinks?
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The random walk idea gets transitional probabilities from 
connectivity.  Can modify the random walk to deal with dead ends.

Repeat:
You are on a webpage.
If there are no outlinks

Pick a random page and  go there.
else

Flip an unfair coin.
if heads

Click on a random outlink and go there.
else

Pick a random page and go there.
end

end                                                   

In practice, an unfair coin 

with prob .85 heads works 

well.

This results in a different 
transitional probability matrix.
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Quantifying Importance

How do you rank web pages for importance given 
that you know the link structure of the Web, i.e., 
the in-links and out-links for each web page?

A related question:
How does a deleted or added link on a webpage 
affect its “rank”?


