
CS1112 Lecture 27 

Lecture slides 1

Previous Lecture:
Comparing different sorting algorithms
Recursion

Today’s Lecture:
Recursion review
Efficiency: dealing with “expensive” function evaluation
A model to quantify importance: Google “Page Rank”

Announcement:
Discussion this week in the computer lab (UP B7)
P6 due Thursday at 11pm

Lecture 27 8

Why is mesh generation a divide-&-conquer process?

Let’s draw this graphic

Lecture 27 10

A “level-1” partition of the triangle

(obtained by connecting the midpoints of the sides of the original triangle)

Now do the same partitioning (connecting midpts) on each corner (white) 
triangle to obtain the “level-2” partitioning

Lecture 27 11

The “level-2” partition of the triangle

Lecture 27 14

The “level-4” partition of the triangle

Lecture 27 15

The basic operation at each level

if the triangle is small
Don’t subdivide and just color it yellow.

else
Subdivide: 
Connect the side midpoints;
color the interior triangle magenta;
apply same process to each outer triangle.

end



CS1112 Lecture 27 

Lecture slides 2

Lecture 27 35

function MeshTriangle(x,y,L)
% x,y are 3-vectors that define the vertices of a triangle.
% Draw level-L partitioning.  Assume hold is on.

if L==0
% Recursion limit reached; no more subdivision required.
fill(x,y,'y')  % Color this triangle yellow

else
% Need to subdivide:  determine the side midpoints; connect
% midpts to get “interior triangle”; color it magenta.

% Apply the process to the three "corner" triangles...

end

Lecture 27 38Lecture 26 38

Expensive function evaluations

Consider the execution of a program that is dominated 
by multiple calls to an expensive-to-evaluate function 
(e.g., climate simulation models)

Can try to improve efficiency by dealing with the 
expensive function evaluations

Time spent on evaluating a function Time for other program tasks

Total time

Lecture 27 39Lecture 26 39

Dealing with expensive function evaluations

Can the function code be improved?
Can we do fewer function evaluations?
Can we pre-compute and store specific function values 
so that during the main program execution the program 
can just look up the values?

Consider function f(x). If there are many function calls and few 
distinct values of x, can get substantial speedup
Only speeds up main program execution—it still takes time to 
do the pre-computation

f(x)

x

Lecture 27 41Lecture 26 41

What are some issues and potential problems with the 
“table look-up” strategy?

x    f(x)
1 1.01
2 2.67
3 5.71
4 9.12
5 7.98
: :

Pre-calculate and 
store these values 
(e.g., in a vector H)

Lecture 27 43

Quantifying Importance

How do you rank web pages for importance given 
that you know the link structure of the Web, i.e., 
the in-links and out-links for each web page?

A related question:
How does a deleted or added link on a webpage 
affect its “rank”?

Lecture 27 44

Background

Index all the pages on the Web from 1 to n.  (n is 
around ten billion.)

The PageRank algorithm orders these pages from 
“most important” to “least important.”

It does this by analyzing links, not content.



CS1112 Lecture 27 

Lecture slides 3

Lecture 27 45

Key ideas

There is a random web surfer—a special random 
walk
The surfer has some random “surfing”
behavior—a transition probability matrix
The transition probability matrix comes from the 
link structure of the web—a connectivity matrix
Applying the transition probability matrix 
Page Rank

Lecture 27 46

A 3-node network with specified transition probabilities 

1

2

3

.1

.2

.3

.3

.1
.5

.7

.6

.2

A node
Transition 
probabilities

Lecture 27 47

A special random walk

Suppose there are a 1000 people on each node.

At the sound of a whistle they hop to another 
node in accordance with the “outbound”
probabilities.

For now we assume we know these 
probabilities.  Later we will see how 
to get them.

Lecture 27 48

At Node 1

1

2

3

.1

.2

.3

.3

0.1
.5

0.7

.6

0.2

Lecture 27 49

At Node 1

1

2

3

.1

.2

.3

.3

100
.5

700

.6

200

Lecture 27 50

At Node 2

1

2

3

100

.2

.3

300

100
.5

700

600

200



CS1112 Lecture 27 

Lecture slides 4

Lecture 27 51

At Node 3

1

2

3

100

200

300

300

100

700

600

200

500
Lecture 27 52

State Vector:
describes the state at each node at a specific time

1000

1000

1000

1000

1300

700

1120

1300

580

T=0 T=1 T=2

Lecture 27 53

After 100 iterations

T=99         T=100

Node 1    1142.85      1142.85

Node 2    1357.14      1357.14

Node 3     500.00       500.00

Appears to reach a steady state

Call this the stationary vector
Lecture 27 56

Formula for the new state vector

W(1) = P(1,1)*v(1) + P(1,2)*v(2) + P(1,3)*v(3)
W(2) = P(2,1)*v(1) + P(2,2)*v(2) + P(2,3)*v(3)
W(3) = P(3,1)*v(1) + P(3,2)*v(2) + P(3,3)*v(3)

P
.7
.2

.3

.6

.1 .5
.3
.2

.1

v is the old state vector
w is the updated state vector

P(i,j) is 
probability of 
hopping to node
i from node j

Lecture 27 57

The general case

function w = Update(P,v)
% Update state vector v based on transition
% probability matrix P to give state vector w
n = length(v); 
w = zeros(n,1);
for i=1:n

for j=1:n
w(i) = w(i) + P(i,j)*v(j);

end
end

Lecture 27 58

To obtain the stationary vector…

function [w,err]= StatVec(P,v,tol,kMax)
% Iterate to get stationary vector w
w = Update(P,v);
err = max(abs(w-v));
k = 1;
while k<kMax && err>tol

v = w;
w = Update(P,v);
err = max(abs(w-v));
k = k+1;

end



CS1112 Lecture 27 

Lecture slides 5

Lecture 27 59

Stationary vector indicates importance:   2 1 3

1

2

3

.1

.2

.3

.3

.1
.5

.7

.6

.2

1357

1143
500

Lecture 27 60

Repeat:
You are on a webpage.
There are m outlinks, 

so choose one at 
random.

Click on the link.

Repeat:
You are on an island.
According to the 

transitional 
probabilities,

go to another island.

A random walk on the web Random island hopping

Use the link structure of the 
web to figure out the 
transitional probabilities! (Assume no dead ends for 

now;  we deal with them later.) 

Lecture 27 61

0   0   0   0   0   0   1   1
1   0   0   1   0   0   0   0
1   0   1   0   0   1   0   1
0   0   0   0   1   0   0   0
1   0   1   0   0   0   0   1
0   0   1   0   0   0   0   1
0   0   1   0   0   0   0   0
0   1   0   1   0   0   0   0

Connectivity 
Matrix

G

G(i,j) is 1 if there is a link on 
page j to page i.

(I.e., you can get to i from j.)

Lecture 27 62

0   0   0   0   0   0   1   1
1   0   0   1   0   0   0   0
1   0   1   0   0   1   0   1
0   0   0   0   1   0   0   0
1   0   1   0   0   0   0   1
0   0   1   0   0   0   0   1
0   0   1   0   0   0   0   0
0   1   0   1   0   0   0   0

Connectivity 
Matrix

0   0   0   0   0   0   ?   ? 
?   0   0   ?   0   0   0   0
?   0   ?   0   0   ?   0   ? 
0   0   0   0   ?   0   0   0
?   0   ?   0   0   0   0   ? 
0   0   ?   0   0   0   0   ? 
0   0   ?   0   0   0   0   0
0   ?   0   ?   0   0   0   0

Transition 
Probability 
Matrix 
derived from 
Connectivity 
Matrix

G

P

Lecture 27 63

0   0   0   0   0   0   1   1
1   0   0   1   0   0   0   0
1   0   1   0   0   1   0   1
0   0   0   0   1   0   0   0
1   0   1   0   0   0   0   1
0   0   1   0   0   0   0   1
0   0   1   0   0   0   0   0
0   1   0   1   0   0   0   0

Connectivity 
Matrix

0   0   0   0   0   0   ?   ? 
?   0   0   ?   0   0   0   0
?   0   ?   0   0   ?   0   ? 
0   0   0   0   ?   0   0   0
?   0   ?   0   0   0   0   ? 
0   0   ?   0   0   0   0   ? 
0   0   ?   0   0   0   0   0
0   ?   0   ?   0   0   0   0

G

P

Transition Probability

A.  0

B.  1/8

C.  1/3

D.  1

E.  rand(1)

Lecture 27 65

Connectivity (G) Transition Probability (P)

[n,n] = size(G);
P = zeros(n,n);
for j=1:n

P(:,j) = G(:,j)/sum(G(:,j));
end



CS1112 Lecture 27 

Lecture slides 6

Lecture 27 66

To obtain the stationary vector…

function [w,err]= StatVec(P,v,tol,kMax)
% Iterate to get stationary vector w
w = Update(P,v);
err = max(abs(w-v));
k = 1;
while k<kMax && err>tol

v = w;
w = Update(P,v);
err = max(abs(w-v));
k = k+1;

end
Lecture 27 67

Stationary vector represents how “popular” the pages are 
PageRank

0.5723
0.8206
0.7876
0.2609
0.2064
0.8911
0.2429
0.4100

0.8911
0.8206
0.7876
0.5723
0.4100
0.2609
0.2429
0.2064

6
2
3
1
8
4
7
5

4
2
3
6
8
1
7
5

sorted pRstatVec idx

Lecture 27 68

0.5723
0.8206
0.7876
0.2609
0.2064
0.8911
0.2429
0.4100

-0.8911
-0.8206
-0.7876
-0.5723
-0.4100
-0.2609
-0.2429
-0.2064

6
2
3
1
8
4
7
5

4
2
3
6
8
1
7
5

sorted pRstatVec idx

[sorted, idx] = sort(-statVec);
for k= 1:length(statVec)

j = idx(k);  % index of kth largest
pR(j) = k;

end

Lecture 27 69

The random walk idea gets the transitional probabilities 
from connectivity.  So how to deal with dead ends?

Repeat:
You are on a webpage.
There are m outlinks.
Choose one at random.
Click on the link.

What if there are no outlinks?

Lecture 27 70

The random walk idea gets transitional probabilities from 
connectivity.  Can modify the random walk to deal with dead ends.

Repeat:
You are on a webpage.
If there are no outlinks

Pick a random page and  go there.
else

Flip an unfair coin.
if heads

Click on a random outlink and go there.
else

Pick a random page and go there.
end

end                                                   

In practice, an unfair coin 

with prob .85 heads works 

well.

This results in a different 
transitional probability matrix.

Lecture 27 72

Quantifying Importance

How do you rank web pages for importance given 
that you know the link structure of the Web, i.e., 
the in-links and out-links for each web page?

A related question:
How does a deleted or added link on a webpage 
affect its “rank”?


