- Previous Lecture:
- Comparing different sorting algorithms
- Recursion
- Today's Lecture:
- Recursion review
- Efficiency: dealing with "expensive" function evaluation
- A model to quantify importance: Google "Page Rank"
- Announcement:
- Discussion this week in the computer lab (UP B7)
- P6 due Thursday at IIpm

A "level-I" partition of the triangle
(obtained by connecting the midpoints of the sides of the original triangle)

Now do the same partitioning (connecting midpts) on each corner (white) triangle to obtain the "level-2" partitioning
leture 27

The "level-4" partition of the triangle

Lecture 27

Why is mesh generation a divide-\&-conquer process?
Let's draw this graphic

Leture 27

The "level-2" partition of the triangle

Leeture 27

The basic operation at each level
if the triangle is small
Don't subdivide and just color it yellow.
else
Subdivide:
Connect the side midpoints;
color the interior triangle magenta;
apply same process to each outer triangle.
end
function MeshTriangle(x, y, L)
$\% \mathrm{x}, \mathrm{y}$ are 3 -vectors that define the vertices of a triangle.
\% Draw level-L partitioning. Assume hold is on.
if $\mathrm{L}==0$
\% Recursion limit reached; no more subdivision required.
fill(x,y,'y') \% Color this triangle yellow
else
\% Need to subdivide: determine the side midpoints; connect
\% midpts to get "interior triangle"; color it magenta.
\% Apply the process to the three "corner" triangles...
end

- Can the function code be improved?
- Can we do fewer function evaluations?
- Can we pre-compute and store specific function values so that during the main program execution the program can just look up the values?
- Consider function $f(x)$. If there are many function calls and few distinct values of x, can get substantial speedup
- Only speeds up main program execution-it still takes time to do the pre-computation

Quantifying Importance

How do you rank web pages for importance given that you know the link structure of the Web, i.e., the in-links and out-links for each web page?

A related question:
How does a deleted or added link on a webpage affect its "rank"?

Expensive function evaluations

- Consider the execution of a program that is dominated by multiple calls to an expensive-to-evaluate function (e.g., climate simulation models)

What are some issues and potential problems with the "table look-up" strategy?

x	$f(x)$
1	1.01
2	2.67
3	5.71
4	9.12
5	7.98
$:$	$:$

Pre-calculate and store these values (e.g., in a vector \mathbf{H})

Lecture 28
${ }^{41}$

Background

Index all the pages on the Web from I to n. (n is around ten billion.)

The PageRank algorithm orders these pages from "most important" to "least important."

It does this by analyzing links, not content.

Key ideas

- There is a random web surfer-a special random walk
- The surfer has some random "surfing" behavior-a transition probability matrix
- The transition probability matrix comes from the link structure of the web-a connectivity matrix
- Applying the transition probability matrix \rightarrow Page Rank

A special random walk
Suppose there are a 1000 people on each node.

At the sound of a whistle they hop to another node in accordance with the "outbound" probabilities.

$$
\begin{aligned}
& \text { For now we assume we know these } \\
& \text { probabilities. Later we will see how } \\
& \text { to get them. } \\
& \text { Lecture } 27
\end{aligned}
$$

After 100 iterations			
	$\mathrm{T}=99$	$\mathrm{T}=100$	
Node 1	1142.85	1142.85	
Node 2	1357.14	1357.14	
Node 3	500.00	500.00	
Appears to reach a steady state			
Call this the stationary vector			
Leture 27			

```
The general case
function w = Update(P,v)
% Update state vector v based on transition
% probability matrix P to give state vector w
n = length(v);
w = zeros(n,1);
for i=1:n
        for j=1:n
            w(i) = w(i) + P(i,j)*v(j);
        end
end
```

State Vector:
describes the state at each node at a specific time
$\left.\left.\begin{array}{c}\mathrm{T}=0 \\ 1000 \\ 1000\end{array}\right) \quad \begin{array}{c}\mathrm{T}=1 \\ 1000 \\ 1300 \\ 700\end{array}\right) \quad\left(\begin{array}{c}\mathrm{T}=2 \\ 1120 \\ 1300 \\ 580\end{array}\right)$
lecture 27

Formula for the new state vector

$P(i, j)$ is probability of hopping to node i from node j
$W(1)=P(1,1) * v(1)+P(1,2) * v(2)+P(1,3) * v(3)$
$W(2)=P(2,1) * v(1)+P(2,2) * v(2)+P(2,3) * v(3)$
$W(3)=P(3,1) * V(1)+P(3,2) * V(2)+P(3,3) * V(3)$
\mathbf{v} is the old state vector
\mathbf{W} is the updated state vector
Leture 27

To obtain the stationary vector...
function [w,err]= StatVec(P,v,tol,kMax)
\% Iterate to get stationary vector w w = Update(P, v);
err $=\max (a b s(w-v))$;
k = 1;
while k<kMax \&\& err>tol
v = w;
w = Update(P, v);
err $=\max (a b s(w-v))$;
k = k+1;
end
Lecture 27

Transition Probability Matrix
derived from
Connectivity
Matrix

\mathbf{P}| 0 | 0 | 0 | 0 | 0 | 0 | $?$ | $?$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $?$ | 0 | 0 | $?$ | 0 | 0 | 0 | 0 |
| $?$ | 0 | $?$ | 0 | 0 | $?$ | 0 | $?$ |
| 0 | 0 | 0 | 0 | $?$ | 0 | 0 | 0 |
| $?$ | 0 | $?$ | 0 | 0 | 0 | 0 | $?$ |
| 0 | 0 | $?$ | 0 | 0 | 0 | 0 | $?$ |
| 0 | 0 | $?$ | 0 | 0 | 0 | 0 | 0 |
| 0 | $?$ | 0 | $?$ | 0 | 0 | 0 | 0 |
| Letare 27 | | | | | | | |

Connectivity (G) \rightarrow Transition Probability (P)
$[\mathrm{n}, \mathrm{n}]=\operatorname{size}(\mathrm{G}) ;$
$P=\operatorname{zeros}(n, n)$;
for $\mathrm{j}=1: \mathrm{n}$
$P(:, j)=G(:, j) / s u m(G(:, j)) ;$
end

```
To obtain the stationary vector.
function [w,err]= StatVec(P,v,tol,kMax)
% Iterate to get stationary vector w
w = Update(P,v);
err = max(abs(w-v));
k = 1;
while k<kMax && err>tol
    v = w;
    w = Update(P,v);
    err = max(abs(w-v));
    k = k+1;
end
```

```
[sorted, idx] = sort(-statVec);
for k= 1:length(statVec)
    j = idx(k); % index of kth largest
    pR(j) = k;
end
```

0.5723	-0.8911	6	4
0.8206	-0.8206	2	2
0.7876	-0.7876	3	3
0.2609	-0.5723	1	6
0.2064	-0.4100	8	8
0.8911	-0.2609	4	1
0.2429	-0.2429	7	7
0.4100	-0.2064	5	5
statVec	sorted	idx	PR

The random walk idea gets the transitional probabilities from connectivity. So how to deal with dead ends?

Repeat:

You are on a webpage.
There are m outlinks.
Choose one at random.
Click on the link.

What if there are no outlinks?

Quantifying Importance

How do you rank web pages for importance given that you know the link structure of the Web, i.e., the in-links and out-links for each web page?

A related question:
How does a deleted or added link on a webpage affect its "rank"?
You are on a webpage.
If there are no outlinks
Pick a random page and go there.

The random walk idea gets transitional probabilities from connectivity. Can modify the random walk to deal with dead ends. Repeat:

Click-onarandom outlink and go there.
else
Pick a random page and go there.
end
end
This results in a different transitional probability matrix.

Stationary vector represents how "popular" the pages are
\rightarrow PageRank

0.5723	0.8911	6	4
0.8206	0.8206	2	2
0.7876	0.7876	3	3
0.2609	0.5723	1	6
0.2064	0.4100	8	8
0.8911	0.2609	4	1
0.2429	0.2429	7	7
0.4100	0.2064	5	5
statVec	sorted	idx	pR

127

