
Previous Lecture:
Comparing different sorting algorithms
Recursion

Today’s Lecture:
Recursion review
Efficiency: dealing with “expensive” function evaluation
A model to quantify importance: Google “Page Rank”

Announcement:
Discussion this week in the computer lab (UP B7)
P6 due Thursday at 11pm

Lecture 27 5

Divide-and-conquer methods also show up in
geometric situations

Chop a region up into
triangles with smaller
triangles in “areas of
interest”

Recursive mesh generation

Lecture 27 6

Mesh Generation

Step one in simulating flow around an airfoil is to generate
a mesh and (say) estimate velocity at each mesh point.

An area of
interest

Lecture 27 7

Mesh Generation in 3D

Lecture 27 8

Why is mesh generation a divide-&-conquer process?

Let’s draw this graphic

Lecture 27 9

Start with a triangle

Lecture 27 10

A “level-1” partition of the triangle

(obtained by connecting the midpoints of the sides of the original triangle)

Now do the same partitioning (connecting midpts) on each corner (white)
triangle to obtain the “level-2” partitioning

Lecture 27 11

The “level-2” partition of the triangle

Lecture 27 12

The “level-3” partition of the triangle

Lecture 27 13

The “level-4” partition of the triangle

Lecture 27 14

The “level-4” partition of the triangle

Lecture 27 15

The basic operation at each level

if the triangle is small
Don’t subdivide and just color it yellow.

else
Subdivide:
Connect the side midpoints;
color the interior triangle magenta;
apply same process to each outer triangle.

end

Lecture 27 16

Draw a level-4 partition of the triangle with these vertices

Lecture 27 17

At the start…

Lecture 27 18

Recur: apply the same process on the lower left triangle

Lecture 27 19

Recur again

Lecture 27 20

… and again

The next lower left corner triangle (white) is small—no more
subdivision and just color it yellow.

Lecture 27 21

Now lower left corner triangle of the “level-4” partition is
done. Continue with another corner triangle

Lecture 27 22

… and continue

Lecture 27 23

Now the lower left corner triangle of the “level-3”
partition is done. Continue with another corner
triangle…

Lecture 27 24

Lecture 27 25

We’re “climbing our way out” of the deepest level of
partitioning

Lecture 27 26

Lecture 27 27

Lecture 27 28

Lecture 27 29

Lecture 27 30

Lecture 27 31

Lecture 27 32

Lecture 27 33

Eventually climb all the way out to get the final result

Lecture 27 34

The basic operation at each level

if the triangle is small
Don’t subdivide and just color it yellow.

else
Subdivide:
Connect the side midpoints;
color the interior triangle magenta;
Apply same process to each outer triangle.

end

Lecture 27 35

function MeshTriangle(x,y,L)
% x,y are 3-vectors that define the vertices of a triangle.
% Draw level-L partitioning. Assume hold is on.

if L==0
% Recursion limit reached; no more subdivision required.
fill(x,y,'y') % Color this triangle yellow

else
% Need to subdivide: determine the side midpoints; connect
% midpts to get “interior triangle”; color it magenta.

% Apply the process to the three "corner" triangles...

end

Lecture 27 36

function MeshTriangle(x,y,L)
% x,y are 3-vectors that define the vertices of a triangle.
% Draw level-L partitioning. Assume hold is on.

if L==0
% Recursion limit reached; no more subdivision required.
fill(x,y,'y') % Color this triangle yellow

else
% Need to subdivide: determine the side midpoints; connect
% midpts to get “interior triangle”; color it magenta.
a = [(x(1)+x(2))/2 (x(2)+x(3))/2 (x(3)+x(1))/2];
b = [(y(1)+y(2))/2 (y(2)+y(3))/2 (y(3)+y(1))/2];
fill(a,b,'m')

% Apply the process to the three "corner" triangles...

end

Lecture 27 37

function MeshTriangle(x,y,L)
% x,y are 3-vectors that define the vertices of a triangle.
% Draw level-L partitioning. Assume hold is on.

if L==0
% Recursion limit reached; no more subdivision required.
fill(x,y,'y') % Color this triangle yellow

else
% Need to subdivide: determine the side midpoints; connect
% midpts to get “interior triangle”; color it magenta.
a = [(x(1)+x(2))/2 (x(2)+x(3))/2 (x(3)+x(1))/2];
b = [(y(1)+y(2))/2 (y(2)+y(3))/2 (y(3)+y(1))/2];
fill(a,b,'m')

% Apply the process to the three "corner" triangles...
MeshTriangle([x(1) a(1) a(3)],[y(1) b(1) b(3)],L-1)
MeshTriangle([x(2) a(2) a(1)],[y(2) b(2) b(1)],L-1)
MeshTriangle([x(3) a(3) a(2)],[y(3) b(3) b(2)],L-1)

end

Lecture 27 38Lecture 26 38

Expensive function evaluations

Consider the execution of a program that is dominated
by multiple calls to an expensive-to-evaluate function
(e.g., climate simulation models)

Can try to improve efficiency by dealing with the
expensive function evaluations

Time spent on evaluating a function
Time for other program tasks

Total time

Lecture 27 39Lecture 26 39

Dealing with expensive function evaluations

Can the function code be improved?
Can we do fewer function evaluations?
Can we pre-compute and store specific function values
so that during the main program execution the program
can just look up the values?

Consider function f(x). If there are many function calls and few
distinct values of x, can get substantial speedup
Only speeds up main program execution—it still takes time to
do the pre-computation

f(x)

x

Lecture 27 40Lecture 26 40

What are some issues and potential problems with the
“table look-up” strategy?

Accuracy—need a “dense
grid” to get high accuracy

significant memory
usage
If an exact x-value is not
found, need some kind of
approximation
Incur searching cost if the
x-values are not simple
indices
Feasible in high dimensions
(multiple dependent
variables)?

x f(x)
1 1.01
2 2.67
3 5.71
4 9.12
5 7.98
: :

Pre-calculate and
store these values
(e.g., in a vector H)

To be continued in this week’s lab.

Lecture 27 43

Quantifying Importance

How do you rank web pages for importance given
that you know the link structure of the Web, i.e.,
the in-links and out-links for each web page?

A related question:
How does a deleted or added link on a webpage
affect its “rank”?

Lecture 27 44

Background

Index all the pages on the Web from 1 to n. (n is
around ten billion.)

The PageRank algorithm orders these pages from
“most important” to “least important.”

It does this by analyzing links, not content.

Lecture 27 45

Key ideas

There is a random web surfer—a special random
walk
The surfer has some random “surfing”
behavior—a transition probability matrix
The transition probability matrix comes from the
link structure of the web—a connectivity matrix
Applying the transition probability matrix
Page Rank

Lecture 27 46

A 3-node network with specified transition probabilities

1

2

3

.1

.2

.3

.3

.1
.5

.7

.6

.2

A node
Transition
probabilities

Lecture 27 47

A special random walk

Suppose there are a 1000 people on each node.

At the sound of a whistle they hop to another
node in accordance with the “outbound”
probabilities.

For now we assume we know these
probabilities. Later we will see how
to get them.

Lecture 27 48

At Node 1

1

2

3

.1

.2

.3

.3

0.1
.5

0.7

.6

0.2

Lecture 27 49

At Node 1

1

2

3

.1

.2

.3

.3

100
.5

700

.6

200

Lecture 27 50

At Node 2

1

2

3

100

.2

.3

300

100
.5

700

600

200

Lecture 27 51

At Node 3

1

2

3

100

200

300

300

100

700

600

200

500

Lecture 27 52

State Vector:
describes the state at each node at a specific time

1000

1000

1000

1000

1300

700

1120

1300

580

T=0 T=1 T=2

Lecture 27 53

After 100 iterations

T=99 T=100

Node 1 1142.85 1142.85

Node 2 1357.14 1357.14

Node 3 500.00 500.00

Appears to reach a steady state

Call this the stationary vector

