
Previous Lecture:
Comparing different sorting algorithms
Recursion

Today’s Lecture:
Recursion review
Efficiency: dealing with “expensive” function evaluation
A model to quantify importance: Google “Page Rank”

Announcement:
Discussion this week in the computer lab (UP B7)
P6 due Thursday at 11pm
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Divide-and-conquer methods also show up in 
geometric situations

Chop a region up into 
triangles with smaller 
triangles in “areas of 
interest”

Recursive mesh generation



Lecture 27 6

Mesh Generation

Step one in simulating flow around an airfoil is to generate 
a mesh and (say) estimate velocity at each mesh point.

An area of 
interest
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Mesh Generation in 3D
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Why is mesh generation a divide-&-conquer process?

Let’s draw this graphic
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Start with a triangle
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A “level-1” partition of the triangle

(obtained by connecting the midpoints of the sides of the original triangle)

Now do the same partitioning (connecting midpts) on each corner (white) 
triangle to obtain the “level-2” partitioning
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The “level-2” partition of the triangle
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The “level-3” partition of the triangle
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The “level-4” partition of the triangle
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The “level-4” partition of the triangle
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The basic operation at each level

if the triangle is small
Don’t subdivide and just color it yellow.

else
Subdivide: 
Connect the side midpoints;
color the interior triangle magenta;
apply same process to each outer triangle.

end
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Draw a level-4 partition of the triangle with these vertices
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At the start…



Lecture 27 18

Recur:  apply the same process on the lower left triangle
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Recur again
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… and again

The next lower left corner triangle (white) is small—no more 
subdivision and just color it yellow.
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Now lower left corner triangle of the “level-4” partition is 
done.  Continue with another corner triangle
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… and continue
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Now the lower left corner triangle of the “level-3”
partition is done.  Continue with another corner 
triangle…
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We’re “climbing our way out” of the deepest level of 
partitioning
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Eventually climb all the way out to get the final result



Lecture 27 34

The basic operation at each level

if the triangle is small
Don’t subdivide and just color it yellow.

else
Subdivide: 
Connect the side midpoints;
color the interior triangle magenta;
Apply same process to each outer triangle.

end
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function MeshTriangle(x,y,L)
% x,y are 3-vectors that define the vertices of a triangle.
% Draw level-L partitioning.  Assume hold is on.

if L==0
% Recursion limit reached; no more subdivision required.
fill(x,y,'y')  % Color this triangle yellow

else
% Need to subdivide:  determine the side midpoints; connect
% midpts to get “interior triangle”; color it magenta.

% Apply the process to the three "corner" triangles...

end
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function MeshTriangle(x,y,L)
% x,y are 3-vectors that define the vertices of a triangle.
% Draw level-L partitioning.  Assume hold is on.

if L==0
% Recursion limit reached; no more subdivision required.
fill(x,y,'y')  % Color this triangle yellow

else
% Need to subdivide:  determine the side midpoints; connect
% midpts to get “interior triangle”; color it magenta.
a = [(x(1)+x(2))/2 (x(2)+x(3))/2 (x(3)+x(1))/2];
b = [(y(1)+y(2))/2 (y(2)+y(3))/2 (y(3)+y(1))/2];
fill(a,b,'m')

% Apply the process to the three "corner" triangles...

end
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function MeshTriangle(x,y,L)
% x,y are 3-vectors that define the vertices of a triangle.
% Draw level-L partitioning.  Assume hold is on.

if L==0
% Recursion limit reached; no more subdivision required.
fill(x,y,'y')  % Color this triangle yellow

else
% Need to subdivide:  determine the side midpoints; connect
% midpts to get “interior triangle”; color it magenta.
a = [(x(1)+x(2))/2 (x(2)+x(3))/2 (x(3)+x(1))/2];
b = [(y(1)+y(2))/2 (y(2)+y(3))/2 (y(3)+y(1))/2];
fill(a,b,'m')

% Apply the process to the three "corner" triangles...
MeshTriangle([x(1) a(1) a(3)],[y(1) b(1) b(3)],L-1)
MeshTriangle([x(2) a(2) a(1)],[y(2) b(2) b(1)],L-1)
MeshTriangle([x(3) a(3) a(2)],[y(3) b(3) b(2)],L-1)  

end
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Expensive function evaluations

Consider the execution of a program that is dominated 
by multiple calls to an expensive-to-evaluate function 
(e.g., climate simulation models)

Can try to improve efficiency by dealing with the 
expensive function evaluations

Time spent on evaluating a function
Time for other program tasks

Total time
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Dealing with expensive function evaluations

Can the function code be improved?
Can we do fewer function evaluations?
Can we pre-compute and store specific function values 
so that during the main program execution the program 
can just look up the values?

Consider function f(x). If there are many function calls and few 
distinct values of x, can get substantial speedup
Only speeds up main program execution—it still takes time to 
do the pre-computation

f(x)

x
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What are some issues and potential problems with the 
“table look-up” strategy?

Accuracy—need a “dense 
grid” to get high accuracy 

significant memory 
usage
If an exact x-value is not 
found, need some kind of 
approximation
Incur searching cost if the 
x-values are not simple 
indices
Feasible in high dimensions
(multiple dependent 
variables)?

x    f(x)
1 1.01
2 2.67
3 5.71
4 9.12
5 7.98
: :

Pre-calculate and 
store these values 
(e.g., in a vector H)

To be continued in this week’s lab.
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Quantifying Importance

How do you rank web pages for importance given 
that you know the link structure of the Web, i.e., 
the in-links and out-links for each web page?

A related question:
How does a deleted or added link on a webpage 
affect its “rank”?
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Background

Index all the pages on the Web from 1 to n.  (n is 
around ten billion.)

The PageRank algorithm orders these pages from 
“most important” to “least important.”

It does this by analyzing links, not content.
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Key ideas

There is a random web surfer—a special random 
walk
The surfer has some random “surfing”
behavior—a transition probability matrix
The transition probability matrix comes from the 
link structure of the web—a connectivity matrix
Applying the transition probability matrix 
Page Rank
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A 3-node network with specified transition probabilities 
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A special random walk

Suppose there are a 1000 people on each node.

At the sound of a whistle they hop to another 
node in accordance with the “outbound”
probabilities.

For now we assume we know these 
probabilities.  Later we will see how 
to get them.
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At Node 1
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At Node 1
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At Node 2
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At Node 3
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State Vector:
describes the state at each node at a specific time
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After 100 iterations

T=99         T=100

Node 1    1142.85      1142.85

Node 2    1357.14      1357.14

Node 3     500.00       500.00

Appears to reach a steady state

Call this the stationary vector


