
Previous Lecture:
“Divide and conquer” strategies

Binary search
Merge sort

Today’s Lecture:
“Divide and conquer” strategies (cont’d)—recursion

Merge sort (review)
Removing a character (e.g., the blank) from a string
Tiling (subdividing) a triangle, e.g., Sierpinski Triangle

Some efficiency considerations

Announcements
Project 6 due May 5th at 11pm
CS1112 final will be 5/12 (Thurs) 9am in Barton indoor field East.
Email Prof Fan your entire exam schedule if you have a conflict. We
must have this information by next Thursday (5/5).

Read Insight 14.1

Lecture 26 2

Merge sort is a “divide-and-conquer” strategy

J NR CP DF LA QB KM GH E

Lecture 26 3

function y = mergeSort(x)
% x is a vector. y is a vector
% consisting of the values in x
% sorted from smallest to largest.

n = length(x);
if n==1

y = x;
else

m = floor(n/2);
yL = mergeSort(x(1:m));
yR = mergeSort(x(m+1:n));
y = merge(yL,yR);

end

Lecture 26 4

function y=mergeSort(x)
n=length(x);
if n==1

y=x;
else

m=floor(n/2);
yL=mergeSort(x(1:m));
yR=mergeSort(x(m+1:n));
y=merge(yL,yR);

end

Lecture 26 5

function y=mergeSort(x)
n=length(x);
if n==1

y=x;
else

m=floor(n/2);
yL=mergeSort(x(1:m));
yR=mergeSort(x(m+1:n));
y=merge(yL,yR);

end

Lecture 26 6

function y=mergeSort(x)
n=length(x);
if n==1

y=x;
else

m=floor(n/2);
yL=mergeSort(x(1:m));
yR=mergeSort(x(m+1:n));
y=merge(yL,yR);

end

Lecture 26 8

How do merge sort, insertion sort, and bubble sort compare?

Insertion sort and bubble sort are similar
Both involve a series of comparisons and swaps
Both involve nested loops

Merge sort uses recursion

Lecture 26 9

function x = insertSort(x)
% Sort vector x in ascending order with insertion sort

n = length(x);
for i= 1:n-1

% Sort x(1:i+1) given that x(1:i) is sorted
j= i;
need2swap= x(j+1) < x(j);
while need2swap

% swap x(j+1) and x(j)
temp= x(j);
x(j)= x(j+1);
x(j+1)= temp;

j= j-1;
need2swap= j>0 && x(j+1)<x(j);

end
end

Insertion sort is more

efficient than bubble sort

on average—fewer

comparisons (Lecture 24)

Lecture 26 11

How do merge sort and insertion sort compare?

Insertion sort: (worst case) makes i comparisons
to insert an element in a sorted array of i
elements. For an array of length N:
1+2+…+(N-1) = N(N-1)/2, say N2 for big N

Merge sort:

Lecture 26 12

function y = mergeSort(x)
% x is a vector. y is a vector
% consisting of the values in x
% sorted from smallest to largest.

n = length(x);
if n==1

y = x;
else

m = floor(n/2);
yL = mergeSort(x(1:m));
yR = mergeSort(x(m+1:n));
y = merge(yL,yR);

end

All the comparisons between
vector values are done in merge

Lecture 26 15

Merge sort: log2(N) “levels”; N comparisons each level

J NR CP DF LA QB KM GH E

Lecture 26 16

How do merge sort and insertion sort compare?

Insertion sort: (worst case) makes i comparisons
to insert an element in a sorted array of i
elements. For an array of length N:
1+2+…+(N-1) = N(N-1)/2, say N2 for big N

Merge sort: N· log2(N)

Insertion sort is done in-place; merge sort
(recursion) requires much more memory

O(N2)

O(N log2(N))

Order of
magnitude

Lecture 26 17

How to choose??

Depends on application
Merge sort is especially good for sorting large
data set (but watch out for memory usage)
Insertion sort is “order N2” at worst case, but
what about an average case? If the application
requires that you maintain a sorted array,
insertion sort may be a good choice

Lecture 26 18

Why not just use Matlab’s sort function?

Flexibility
E.g., to maintain a sorted list, just write the code for
insertion sort
E.g., sort strings or other complicated structures
Sort according to some criterion set out in a function
file

Observe that we have the comparison x(j+1)<x(j)
The comparison can be a function that returns a boolean value

Can combine different sort/search algorithms for
specific problem

Lecture 26 23

Back to Recursion

Merge sort

Remove all occurrences of a character from a
string

‘gc aatc gga c ’ ‘gcaatcggac’

Lecture 26 24

Example: removing all occurrences of a character

Can solve using iteration—check one character
(one component of the vector) at a time

Subproblem 1:
Keep or discard s(1)

‘c’ ‘s’ ‘ ’ ‘1’ ‘1’ ‘1’ ‘2’
1 2 … k …

s

Subproblem 2:
Keep or discard s(2)

Subproblem k:
Keep or discard s(k)

Iteration:
Divide problem
into sequence of
equal-sized,
identical
subproblems

Example: removing all occurrences of a character

Can solve using recursion
Original problem: remove all the blanks in string s
Decompose into two parts: 1. remove blank in s(1)

2. remove blanks in s(2:length(s))
Original problem

Decompose into 2 parts Decompose

Decompose

Decompose

Decompose

‘ ’

Lecture 26 26

function s = removeChar(c, s)
% Return string s with character c removed

if length(s)==0 % Base case: nothing to do
return

else

end

Lecture 26 27

function s = removeChar(c, s)
% Return string s with character c removed

if length(s)==0 % Base case: nothing to do
return

else
if s(1)~=c

else

end
end

Lecture 26 28

function s = removeChar(c, s)
% Return string s with character c removed

if length(s)==0 % Base case: nothing to do
return

else
if s(1)~=c
% return string is
% s(1) and remaining s with char c removed

else

end
end

Lecture 26 29

function s = removeChar(c, s)
% Return string s with character c removed

if length(s)==0 % Base case: nothing to do
return

else
if s(1)~=c
% return string is
% s(1) and remaining s with char c removed

else
% return string is just
% the remaining s with char c removed

end
end

Lecture 26 30

function s = removeChar(c, s)
% Return string s with character c removed

if length(s)==0 % Base case: nothing to do
return

else
if s(1)~=c
% return string is
% s(1) and remaining s with char c removed
s= [s(1) removeChar(c, s(2:length(s)))];

else
% return string is just
% the remaining s with char c removed

end
end

Lecture 26 31

function s = removeChar(c, s)
% Return string s with character c removed

if length(s)==0 % Base case: nothing to do
return

else
if s(1)~=c
% return string is
% s(1) and remaining s with char c removed
s= [s(1) removeChar(c, s(2:length(s)))];

else
% return string is just
% the remaining s with char c removed
s= removeChar(c, s(2:length(s)));

end
end

function s = removeChar(c, s)
if length(s)==0

return
else

if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs

c

_

_

c _

d _ o gs _

removeChar – 1st call

function s = removeChar(c, s)
if length(s)==0

return
else

if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs

c

_

_

c _

d _ o gs _

removeChar – 1st call

[]d

function s = removeChar(c, s)
if length(s)==0

return
else

if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs _

c _

c _

d _ o gs _

removeChar – 1st call

[]d

removeChar – 2nd call
c _

_ o gs _

[]

function s = removeChar(c, s)
if length(s)==0

return
else

if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs _

c _

c _

d _ o gs _

removeChar – 1st call

[]d

removeChar – 2nd call
c _

_ o gs _

[]

removeChar – 3rd call
c _

o gs _

[]o

function s = removeChar(c, s)
if length(s)==0

return
else

if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs _

c _

c _

d _ o gs _

removeChar – 1st call

[]d

removeChar – 2nd call
c _

_ o gs _

[]

removeChar – 3rd call
c _

o gs _

[]o

removeChar – 4th call
c _

gs _

[]

function s = removeChar(c, s)
if length(s)==0

return
else

if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs _

c _

c _

d _ o gs _

removeChar – 1st call

[]d

removeChar – 2nd call
c _

_ o gs _

[]

removeChar – 3rd call
c _

o gs _

[]o

removeChar – 4th call
c _

gs _

[]

removeChar – 5th call
c _

gs

[]g

function s = removeChar(c, s)
if length(s)==0

return
else

if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs _

c _

c _

d _ o gs _

removeChar – 1st call

[]d

removeChar – 2nd call
c _

_ o gs _

[]

removeChar – 3rd call
c _

o gs _

[]o

removeChar – 4th call
c _

gs _

[]

removeChar – 5th call
c _

gs

[]g

removeChar – 6th call
c _

s ‘’
return

function s = removeChar(c, s)
if length(s)==0

return
else

if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs _

c _

c _

d _ o gs _

removeChar – 1st call

[]d

removeChar – 2nd call
c _

_ o gs _

[]

removeChar – 3rd call
c _

o gs _

[]o

removeChar – 4th call
c _

gs _

[]

removeChar – 5th call
c _

gs

[]g

removeChar – 6th call
c _

s ‘’

re
tu

rn

‘’

function s = removeChar(c, s)
if length(s)==0

return
else

if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs _

c _

c _

d _ o gs _

removeChar – 1st call

[]d

removeChar – 2nd call
c _

_ o gs _

[]

removeChar – 3rd call
c _

o gs _

[]o

removeChar – 4th call
c _

gs _

[]

removeChar – 5th call
c _

gs

[]g

removeChar – 6th call
c _

s ‘’

return

‘’

g

function s = removeChar(c, s)
if length(s)==0

return
else

if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs _

c _

c _

d _ o gs _

removeChar – 1st call

[]d

removeChar – 2nd call
c _

_ o gs _

[]

removeChar – 3rd call
c _

o gs _

[]o

removeChar – 4th call
c _

gs _

[]

removeChar – 5th call
c _

gs

[]g

removeChar – 6th call
c _

s ‘’

return

‘’

gg

function s = removeChar(c, s)
if length(s)==0

return
else

if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs _

c _

c _

d _ o gs _

removeChar – 1st call

[]d

removeChar – 2nd call
c _

_ o gs _

[]

removeChar – 3rd call
c _

o gs _

[]o

removeChar – 4th call
c _

gs _

[]

removeChar – 5th call
c _

gs

[]g

removeChar – 6th call
c _

s ‘’

return

‘’

ggo g

function s = removeChar(c, s)
if length(s)==0

return
else

if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs _

c _

c _

d _ o gs _

removeChar – 1st call

[]d

removeChar – 2nd call
c _

_ o gs _

[]

removeChar – 3rd call
c _

o gs _

[]o

removeChar – 4th call
c _

gs _

[]

removeChar – 5th call
c _

gs

[]g

removeChar – 6th call
c _

s ‘’

re
tu

rn

‘’

ggo go g

d o g

Lecture 26 44

Divide-and-conquer methods also show up in
geometric situations

Chop a region up into
triangles with smaller
triangles in “areas of
interest”

Recursive mesh generation

