```
- Previous Lecture:
    - Linear Search
    - Bubble Sort, Insertion Sort
- Today's Lecture:
    ."Divide and conquer" strategies
    - Binary search
    -Merge sort
    - Recursion
- Announcements:
    - Discussion this week in classrooms
    - Prelim 3 will be returned at end of lecture. If your paper isn't
        here, pick it up from CSI I 12 consultants in ACCEL during
        consulting hrs (Sunday to Thrusdays 5-10pm)
    - Project 6 due May 5't. Part I posted; Part 2 to be posted later.
```

Key idea of "phone book search": repeated halving
To find the page containing Pat Reed's number...
while (Phone book is longer than I page)
Open to the middle page.
if "Reed" comes before the first entry,
Rip and throw away the $2^{\text {nd }}$ half.
else
Rip and throw away the $I^{\text {st }}$ half.
end
end

Binary Search

Repeatedly halving the size of the "search space" is the main idea behind the method of binary search.

An item in a sorted array of length n can be located with just $\log _{2} n$ comparisons.
"Savings" is significant!

n	$\log 2(n)$
100	7
1000	10
10000	13

Binary search: target $x=70$

L: 7
$v($ Mid $)<=x$
Mid: 8
So throw away the
R: 9 left half...

Mid: 8
R-L = 1
R: 9
Binary search: target $x=70$

1	2	3	4	5	6	7	8	9	10	11	12	
\mathbf{v}	$\mathbf{1 2}$	$\mathbf{1 5}$	$\mathbf{3 3}$	$\mathbf{3 5}$	$\mathbf{4 2}$	$\mathbf{4 5}$	$\mathbf{5 1}$	$\mathbf{6 2}$	$\mathbf{7 3}$	$\mathbf{7 5}$	$\mathbf{8 6}$	$\mathbf{9 8}$

L: 8

Binary search is efficient, but how do we sort a vector in the first place so that we can use binary search?

- Many different algorithms out there...
- We saw bubble sort and insertion sort
- Let's look at merge sort
- An example of the "divide and conquer" approach
- We'll compare their efficiency later

Subdivide the sorting task

\section*{| H | E | M | G | B | K | A | Q | F | L | P | D | R | C |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |} | H | E | M | G | B | K | A | Q |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

The central sub-problem is the merging of two sorted arrays into one single sorted array

$$
\begin{array}{|l|l|l|l|}
\hline 12 & 33 & 35 & 45 \\
\hline
\end{array}
$$

$$
\begin{array}{|l|l|l|l|l|}
\hline 15 & 42 & 55 & 65 & 75 \\
\hline
\end{array}
$$

12	15	33	35	42	45	55	65	75

```
function y = mergeSort(x)
% x is a vector. y is a vector
% consisting of the values in x
% sorted from smallest to largest.
n = length(x);
if n==1
    y = x;
else
    m = floor(n/2);
    yL = mergeSortL(x(1:m));
    yR = mergeSortR(x(m+1:n));
    y = merge(yL,yR);
end
```



```
function y = mergeSort(x)
% x is a vector. y is a vector
% consisting of the values in x
% sorted from smallest to largest.
n = length(x);
if n==1
    y = x;
else
    m = floor(n/2);
    yL = mergeSort(x(1:m));
    yR = mergeSort(x(m+1:n));
    y = merge(yL,yR);
end
```


function $z=\operatorname{merge}(x, y)$
nx = length(x); ny = length(y);
z = zeros(1, nx+ny);
ix = 1; iy = 1; iz = 1;
while ix<=nx \&\& iy<=ny
end
\% Deal with remaining values in x or y

