CS1112 Lecture 25

m Previous Lecture:
= Linear Search
= Bubble Sort, Insertion Sort

= Today’s Lecture:
= “Divide and conquer” strategies
= Binary search
= Merge sort
= Recursion

= Announcements:
= Discussion this week in classrooms

= Prelim 3 will be returned at end of lecture. If your paper isn’t
here, pick it up from CSI112 consultants in ACCEL during
consulting hrs (Sunday to Thrusdays 5-10pm)

= Project 6 due May 5%. Part | posted; Part 2 to be posted later.

An ordered (sorted) list

The Manhattan phone =
book has 1,000,000+
entries.

How is it possible to
locate a name by
examining just a tiny,
tiny fraction of those
entries!

Lecture 25 6

Key idea of “phone book search”: repeated halving
To find the page containing Pat Reed’s number-...

while (Phone book is longer than | page)
Open to the middle page.
if “Reed” comes before the first entry,
Rip and throw away the 2" half.
else
Rip and throw away the |5t half.
end
end

Lecture 25 8

What happens to the phone book length?

Original: 3000 pages
After 1 rip: 1500 pages
After 2 rips: 750 pages
After 3 rips: 375 pages
After 4 rips: 188 pages
After 5 rips: 94 pages

After 12 rips: 1 page

Lecture 25 9

Binary Search

Repeatedly halving the size of the “search space” is
the main idea behind the method of binary search.

An item in a sorted array of length n can be
located with just log, n comparisons.

“Savings” is significant! n 1og2(n)
100 7
1000 10
10000 13

Lecture 25 12

Lecture slides

Binary search: target x =70

1 2 3 4 5 6 7 8 9 10 11 12

v|12|15[33[35[42[45[51]62]73]| 75| 86| 98|
1 LI Li
: v(Mid) <= x

So throw away the
: left half...

Lecture 25 13

CS1112 Lecture 25

Binary search: target x =70

1 2 3 4 5 6 7 8 9 1011 12

v|12|15|33|35[42[45]|51|62|73|75|86] 98|
1 1 1
L: [&] x < v(Mid)

Mid:
El So throw away the
R: right half ...

Lecture 25 14

Binary search: target x =70

1 2 3 4 5 6 7 8 9 1011 12

v|12[15]|33|35[42]45|51[62]| 73 75|86]98]
Tt 1
L: [&] v(Mid) <= x

So throw away the
R: El left half...

Lecture 25 15

Binary search: target x =70

12 3 4 5 6 7 8 9 1011 12

v|12|15[33]35[42]45[51]62]| 78] 75|86 | 98|
Tr1
= vMid) <= x

So throw away the
left half...

Lecture 25 16

Binary search: target x =70

12 3 4 5 6 7 8 9 1011 12

v|12|15[33]35[42]45]|51]62]| 78 75|86 98|
11

L: Done because
Mid: R-L =1
R: [9]

Lecture 25 17

function L = binarySearch(x, v)

% Find position after which to insert x. v(1)<.<v(end).
% L is the index such that v(L) <= x < v(L+1);

% L=0 if x<v(l). If x>v(end), L=length(v) but x~=v(L).

% Maintain a search window [L..R] such that v(L)<=x<v(R).
% Since x may not be in v, initially set ...
L=0; R=length(v)+1;

» Keep halving [L..R] until R-L is 1,

% always keeping v(L) <= x < v(R)

while R ~= L+1
m= floor((L+R)/2); % middle of search window
if

else

end
d

Binary search is efficient, but how do we sort a
vector in the first place so that we can use binary
search?

= Many different algorithms out there...
= We saw bubble sort and insertion sort
= Let’s look at merge sort

= An example of the “divide and conquer”
approach

= We'll compare their efficiency later

Lecture 25 2

Lecture slides

CS1112 Lecture 25

Merge sort: Motivation Subdivide the sorting task

[H]efu]cfe]alo]rfr]rfo]rfc]I]N]

(H]efu]cfe]]afo] [Flc]rpfo]r]cfa]n]

What if those two helpers
) each had two sub-helpers?

@ And the sub-helpers each had
two sub-sub-helpers? And...

Lecture 25 28

function y = mergeSort(x) The central sub-problem is the merging of two
% x is a vector. y is a vector

% consisting of the values in x sorted arrays into one single sorted array
% sorted from smallest to largest.

n = length(x);

if n==1
y = X; |15|42|55|65|75|
else
m = Ffloor(n/2);
yL = mergeSortL(x(1:m));
YR = mergeSortR(x(m+1:n)); |12|15|33|35|42|45|55|65|75|
y = merge(yL,yR);
end
Merge Merge

1 1 !

] !

ix<=4 and iy<=5: x(ix) <= y(iy) ??? ix<=4 and iy<=5: x(ix) <= y(iy) VYES

Lecture slides

CS1112 Lecture 25

Merge Merge

1 ! |
. : ix:
| 1 |

y:[15]42]55]65[75] y:[15]42]55]65[75] y:[2]

4 i
zofr2fas] [[| | | | z: [T iz:l2]

ix<=4 and iy<=5: x(ix) <= y(iy) NO ix<=4 and i1y<=5: x(ix) <= y(iy) VYES

X
[]

;-
[-]

-
N
H

function z = merge(X,y)

Merge nx = length(x); ny = length(y);
z = zeros(1l, nx+ny);

l ix =1; iy = 1; iz = 1;

X: iX: while ix<=nx && i1y<=ny
1

y:[15]42]55]65]75] iy:[2]
1 ;?ongeal with remaining values in x or y

- EEEEII 7]

ix<=4 and iy<=5: x(ix) <= y(iy) YES

function y=mergeSort(x)

function y = mergeSort(x) n=length():
% x Is a vector. Yy is a vector e
% consisting of the values iIn X else
m=Floor(n/2);
% sorted from smallest to largest. yL=mergeSort(x(1:my);
yR=mergeSort(x(m+1:n));
y=merge(yL,yR);
n = length(x); end
it n==1
y = X;

else
m = floor(n/2);
yL = mergeSort(x(1:m));
yR = mergeSort(x(m+1:n));
y = merge(yL,yR);

end

Lecture slides

