- Previous Lecture:
- Acoustic data: frequency computation
- Touchtone phone
- Today's Lecture:
- Search: Linear Search
- Sort: Bubble Sort and Insertion Sort
- Efficiency Analysis
- Announcements:
- Prelim 3 scores will be posted on Sunday; paper will be returned next Tues

Searching for an item in an unorganized collection?

- May need to look through the whole collection to find the target item
- E.g., find value $x$ in vector $v$

- Linear search

```
% Linear Search
% f is index of first occurrence
% of value x in vector v.
% f is -1 if x not found.
k= 1;
while k<=length(v) && v(k)~=x
    k= k + 1;
end
if k>length(v)
    f= -1; % signal for x not found
else
    f=k;
end
                                    v (12 
                            x 31
```

\% Linear Search
\% f is index of first occurrence
$\%$ of value $x$ in vector $v$.
$\% \mathrm{f}$ is -1 if x not found.
$\mathrm{k}=1$;
while $k<=$ length( $v$ ) \&\& $v(k) \sim=x$
$\mathrm{k}=\mathrm{k}+1$;
end
if $k>l e n g t h(v)$
$\mathrm{f}=-1$; \% signal for x not found
else
$f=k$;
end

Suppose another vector is twice as long as v . The expected "effort" required to do a linear search is .
A. squared
C. the same
end

```
% Linear Search
% f is index of first occurrence of value x in vector v.
% f is -1 if x not found.
k= 1;
while k<=length(v) && v(k)~=x
    k= k + 1;
end
if k>length(v)
    f= -1; % signal for x not found
else f=k;
end
        Searching in
v \12 15 15
x 31
```




The "bubble" process


The "bubble" process


The second "bubble" process

> 10 After two bubble processes, the first two components are sorted.

> Repeatedly apply the bubble process to sort the whole array

| 10 |  |
| :--- | :--- |
| 20 |  |
| 30 |  |
| 50 |  |
| 40 |  |
| 60 |  |
|  | After two bubble processes, the <br> first two components are <br> sorted. <br> Repeatedly apply the bubble <br> process to sort the whole array |
|  |  |
|  |  |
|  |  |

Bubble.m


Possible to get a sorted vector before $n-1$ "bubble" processes





| Insertion |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 | 3 |  |  |  |  |  |
|  | 2 | 3 |  |  |  |  |  |
|  | 2 | 3 |  |  |  | 4 |  |
|  | 2 | 3 |  |  | 4 | 9 |  |
|  | 2 | 3 |  |  |  | 9 |  |
|  | 2 | 3 |  |  |  | 9 | Compare adjacent components: DONE! No more swaps. |
| Insert.m | Leture 24 |  |  |  |  |  | ${ }^{36}$ |

Sort vector $\mathbf{X}$ using the Insertion Sort algorithm
Need to start with a sorted subvector. How do you find one?

Length I subvector is "sorted"
Insert $\mathrm{x}(2):[\mathrm{x}(1: 2), \mathrm{C}, \mathrm{S}]=\operatorname{Insert}(\mathrm{x}(1: 2))$
Insert $x(3):[x(1: 3), C, S]=\operatorname{Insert}(x(1: 3))$
Insert $\mathrm{x}(4):[\mathrm{x}(1: 4), \mathrm{C}, \mathrm{S}]=\operatorname{Insert}(\mathrm{x}(1: 4))$
Insert $x(5):[x(1: 5), C, S]=\operatorname{Insert}(x(1: 5))$
Insert $\mathrm{x}(6):[\mathrm{x}(1: 6), \mathrm{C}, \mathrm{S}]=\operatorname{Insert(x(1:6))}$

InsertionSort.m

Letcture 24
Bubble Sort vs. Insertion Sort

- Both involve comparing adjacent values and swaps
- On average, which is more efficient?


Other efficiency considerations
function $x=$ insertSort(x)
\% Sort vector $x$ in ascending order with insertion sort
n = length( $x$ );
for $i=1: n-1$
\% Sort $\times(1: i+1)$ given that $\times(1: i)$ is sorted

- Memory use and access
- Example: Rather than directing the insert process to a subfunction, have it done "in-line."
- Also, Insertion sort can be done "in-place," i.e., using "only" the memory space of the original vector.

