
CS1112 Lecture

Lecture slides 1

 Previous Lecture:
 Acoustic data:  frequency computation
 Touchtone phone

 Today’s Lecture:
 Search:  Linear Search
 Sort:  Bubble Sort and Insertion Sort
 Efficiency Analysis Efficiency Analysis

 Announcements:
 Prelim 3 scores will be posted on Sunday; paper will be 

returned next Tues

Searching for an item in an unorganized collection?  

 May need to look through the whole collection 
to find the target item

 E.g., find value x in vector v

v
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 Linear search

v

x

% Linear Search
% f is index of first occurrence  

%   of value x in vector v.

% f is -1 if x not found.

k= 1;
while  k<=length(v) && v(k)~=x 

k= k + 1;

end

A.  squared

B  doubled
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end

if  k>length(v)  
f= -1; % signal for x not found

else
f= k;

end

Suppose another vector is twice as long as v.  The 
expected “effort” required to do a linear search is …

C.  the same

B.  doubled

D.  halved

% Linear Search
% f is index of first occurrence  

%   of value x in vector v.

% f is -1 if x not found.

k= 1;
while  k<=length(v) && v(k)~=x 

k= k + 1;

end
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end

if  k>length(v)  
f= -1; % signal for x not found

else
f= k;

end
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% Linear Search
% f is index of first occurrence of value x in vector v.

% f is -1 if x not found.

k= 1;
while  k<=length(v) && v(k)~=x 

k= k + 1;

end

if  k>length(v)  
f= -1; % signal for x not found

l
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else
f= k;

end
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The “bubble” process
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Compare adjacent values.
Swap if “out of order.”
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The “bubble” process
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Compare adjacent values.
Swap if “out of order.”

The “bubble” process
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Compare adjacent values.
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The “bubble” process
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Compare adjacent values.
Swap if “out of order.”
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The “bubble” process
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Compare adjacent values.
Swap if “out of order.”
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The “bubble” process
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The smallest (lightest) 
value “bubbles” to the top
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Done in one pass through 
the vector

Bubble.m   

The second “bubble” process
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After two bubble processes, the 
first two components are 
sorted.
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Repeatedly apply the bubble 
process to sort the whole array
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Sort vector x using the Bubble Sort algorithm

Bubble x:             [x,C,S] = Bubble(x)

x

Bubble x(2:6):  [x(2:6),C,S] = Bubble(x(2:6))

Bubble x(3:6):  [x(3:6),C,S] = Bubble(x(3:6))

Bubble x(4:6):  [x(4:6) C S] = Bubble(x(4:6))
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Bubble x(4:6):  [x(4:6),C,S] = Bubble(x(4:6))

Bubble x(5:6):  [x(5:6),C,S] = Bubble(x(5:6))

BubbleSort1.m   

Possible to get a sorted vector before n-1 “bubble” processes
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After the 3rd bubble process

Vector is completely sorted (in this 
example)
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How to improve BubbleSort to 
quit early?

The Insertion Process

 Given a sorted array x, insert a number y such 
that the result is sorted
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2 3 6 98

2 3 6 9 8

2 3 6 9 8

2 3 6 98 Just swap 8 & 9

Insertion
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42 3 6 98

2 3 6 9 8

2 3 6 98

Compare adjacent components:
swap 9 & 4

Insertion
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swap 9 & 4
42 3 6 98

2 3 6 9 8

2 3 6 98

Insertion
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2 3 6 98 4
Compare adjacent components:

swap 8 & 4
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42 3 6 98

2 3 6 9 8

2 3 6 98

Insertion
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2 3 6 98 4

2 3 6 984
Compare adjacent components:

swap 6 & 4

42 3 6 98

2 3 6 9 8

2 3 6 98

Insertion
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2 3 6 98 4

2 3 6 984

2 3 6 984
Compare adjacent components:

DONE!  No more swaps.

Insert.m

Sort vector x using the Insertion Sort algorithm

Insert x(2):  [x(1:2),C,S] = Insert(x(1:2))

x

Need to start with a sorted subvector.  How do you find one?

Insert x(3):  [x(1:3) C S] = Insert(x(1:3))

Length 1 subvector is “sorted”
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Insert x(3):  [x(1:3),C,S] = Insert(x(1:3))

Insert x(4):  [x(1:4),C,S] = Insert(x(1:4))

Insert x(5):  [x(1:5),C,S] = Insert(x(1:5))

Insert x(6):  [x(1:6),C,S] = Insert(x(1:6))

InsertionSort.m

Bubble Sort vs. Insertion Sort

 Both involve comparing adjacent values and 
swaps

 On average, which is more efficient?

A.  Bubble Sort B.  Insertion Sort C.  They’re the same
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Other efficiency considerations

 Worst case, best case, average case
 Use of subfunction incurs an “overhead”
 Memory use and access
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 Example:  Rather than directing the insert process 
to a subfunction, have it done “in-line.” 

 Also, Insertion sort can be done “in-place,” i.e., 
using “only” the memory space of the original 
vector.

function x = insertSort(x)
% Sort vector x in ascending order with insertion sort

n = length(x);
for i= 1:n-1

% Sort x(1:i+1) given that x(1:i) is sorted
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end


