
CS1112 Lecture

Lecture slides 1

 Previous Lecture:
 Acoustic data: frequency computation
 Touchtone phone

 Today’s Lecture:
 Search: Linear Search
 Sort: Bubble Sort and Insertion Sort
 Efficiency Analysis Efficiency Analysis

 Announcements:
 Prelim 3 scores will be posted on Sunday; paper will be

returned next Tues

Searching for an item in an unorganized collection?

 May need to look through the whole collection
to find the target item

 E.g., find value x in vector v

v

Lecture 24 4

 Linear search

v

x

% Linear Search
% f is index of first occurrence

% of value x in vector v.

% f is -1 if x not found.

k= 1;
while k<=length(v) && v(k)~=x

k= k + 1;

end

A. squared

B doubled

Lecture 24 7

end

if k>length(v)
f= -1; % signal for x not found

else
f= k;

end

Suppose another vector is twice as long as v. The
expected “effort” required to do a linear search is …

C. the same

B. doubled

D. halved

% Linear Search
% f is index of first occurrence

% of value x in vector v.

% f is -1 if x not found.

k= 1;
while k<=length(v) && v(k)~=x

k= k + 1;

end

Lecture 24 8

end

if k>length(v)
f= -1; % signal for x not found

else
f= k;

end
12 1535 33 42 45v

x 31

% Linear Search
% f is index of first occurrence of value x in vector v.

% f is -1 if x not found.

k= 1;
while k<=length(v) && v(k)~=x

k= k + 1;

end

if k>length(v)
f= -1; % signal for x not found

l

Lecture 24 10

else
f= k;

end

12 3515 33 42 45v

x 31

The “bubble” process

30

50

10

60

Lecture 24 12

60

40

20
Compare adjacent values.
Swap if “out of order.”

CS1112 Lecture

Lecture slides 2

The “bubble” process

30

50

10

60

Lecture 24 13

60

20

40

Compare adjacent values.
Swap if “out of order.”

The “bubble” process

30

50

10

20
Compare adjacent values.
S if “ f d ”

Lecture 24 14

20

60

40

Swap if “out of order.”

The “bubble” process

30

50

10

20

Compare adjacent values.
Swap if “out of order.”

Lecture 24 15

20

60

40

The “bubble” process

30

10

50

20

Compare adjacent values.
Swap if “out of order.”

Lecture 24 16

20

60

40

The “bubble” process

10

30

50

20

The smallest (lightest)
value “bubbles” to the top

Lecture 24 17

20

60

40

Done in one pass through
the vector

Bubble.m

The second “bubble” process

10

50

20

30

After two bubble processes, the
first two components are
sorted.

Lecture 24 22

50

40

60
Repeatedly apply the bubble
process to sort the whole array

CS1112 Lecture

Lecture slides 3

Sort vector x using the Bubble Sort algorithm

Bubble x: [x,C,S] = Bubble(x)

x

Bubble x(2:6): [x(2:6),C,S] = Bubble(x(2:6))

Bubble x(3:6): [x(3:6),C,S] = Bubble(x(3:6))

Bubble x(4:6): [x(4:6) C S] = Bubble(x(4:6))

Lecture 24 24

Bubble x(4:6): [x(4:6),C,S] = Bubble(x(4:6))

Bubble x(5:6): [x(5:6),C,S] = Bubble(x(5:6))

BubbleSort1.m

Possible to get a sorted vector before n-1 “bubble” processes

10

40

20

30

After the 3rd bubble process

Vector is completely sorted (in this
example)

Lecture 24 28

40

50

60

How to improve BubbleSort to
quit early?

The Insertion Process

 Given a sorted array x, insert a number y such
that the result is sorted

Lecture 24 30

2 3 6 98

2 3 6 9 8

2 3 6 9 8

2 3 6 98 Just swap 8 & 9

Insertion

Lecture 24 31

42 3 6 98

2 3 6 9 8

2 3 6 98

Compare adjacent components:
swap 9 & 4

Insertion

Lecture 24 33

swap 9 & 4
42 3 6 98

2 3 6 9 8

2 3 6 98

Insertion

Lecture 24 34

2 3 6 98 4
Compare adjacent components:

swap 8 & 4

CS1112 Lecture

Lecture slides 4

42 3 6 98

2 3 6 9 8

2 3 6 98

Insertion

Lecture 24 35

2 3 6 98 4

2 3 6 984
Compare adjacent components:

swap 6 & 4

42 3 6 98

2 3 6 9 8

2 3 6 98

Insertion

Lecture 24 36

2 3 6 98 4

2 3 6 984

2 3 6 984
Compare adjacent components:

DONE! No more swaps.

Insert.m

Sort vector x using the Insertion Sort algorithm

Insert x(2): [x(1:2),C,S] = Insert(x(1:2))

x

Need to start with a sorted subvector. How do you find one?

Insert x(3): [x(1:3) C S] = Insert(x(1:3))

Length 1 subvector is “sorted”

Lecture 24 37

Insert x(3): [x(1:3),C,S] = Insert(x(1:3))

Insert x(4): [x(1:4),C,S] = Insert(x(1:4))

Insert x(5): [x(1:5),C,S] = Insert(x(1:5))

Insert x(6): [x(1:6),C,S] = Insert(x(1:6))

InsertionSort.m

Bubble Sort vs. Insertion Sort

 Both involve comparing adjacent values and
swaps

 On average, which is more efficient?

A. Bubble Sort B. Insertion Sort C. They’re the same

Lecture 24 38

Other efficiency considerations

 Worst case, best case, average case
 Use of subfunction incurs an “overhead”
 Memory use and access

Lecture 24 39

 Example: Rather than directing the insert process
to a subfunction, have it done “in-line.”

 Also, Insertion sort can be done “in-place,” i.e.,
using “only” the memory space of the original
vector.

function x = insertSort(x)
% Sort vector x in ascending order with insertion sort

n = length(x);
for i= 1:n-1

% Sort x(1:i+1) given that x(1:i) is sorted

Lecture 24 51

end

