- Previous Lecture:
 - Working with sound files
- Today's Lecture:
 - Frequency computation
 - Touchtone phone

- Announcement:
 - Discussion in the computer lab this week. Bring headphones.
 - Prelim 3 tonight at 7:30pm, Statler Auditorium
 - Lastnames A-O: main seating area
 - Lastnames P-Z: balcony

We looked at the time domain

What about the **frequency** domain?

A "pure-tone" sound is a sinusoidal function

$$y(t) = \sin(2\pi \omega t)$$

$$\underline{\omega}$$
 = the frequency

Higher frequency means that y(t) changes more rapidly with time.

Still looking at the time domain

 $y(t) = \sin(2\pi \cdot 4t)$

 $y(t) = \sin(2\pi \cdot 8t)$

Lecture 23

Digitize for Graphics

- % Sample "Rate"
 - n = 200
- % Sample times
 tFinal = 1;
 t = 0:(1/n):tFinal
- % Digitized Plot...

```
omega = 8;
y= sin(2*pi*omega*t)
plot(t,y)
```

Digitize for Sound

- % Sample Rate
 - Fs = 32768
- % Sample times
 - tFinal = 1;
 - t = 0:(1/Fs):tFinal
- % Digitized sound...

```
omega = 800;
y= sin(2*pi*omega*t);
sound(y,Fs)
```

Equal-Tempered Tuning

0 A	55.00	110.00	220.00	440.00	880.00	1760.00
1 A#	58.27	116.54	233.08	466.16	932.33	1864.66
2 B	61.74	123.47	246.94	493.88	987.77	1975.53
3 C	65.41	130.81	261.63	523.25	1046.50	2093.01
4 C#	69.30	138.59	277.18	554.37	1108.73	2217.46
5 D	73.42	146.83	293.67	587.33	1174.66	2349.32
6 D#	77.78	155.56	311.13	622.25	1244.51	2489.02
7 E	82.41	164.81	329.63	659.26	1318.51	2637.02
8 F	87.31	174.61	349.23	698.46	1396.91	2793.83
9 F#	92.50	185.00	369.99	739.99	1479.98	2959.95
10 G	98.00	196.00	391.99	783.99	1567.98	3135.96
11 G#	103.83	207.65	415.31	830.61	1661.22	3322.44
12 A	110.00	220.00	440.00	880.00	1760.00	3520.00

Entries are frequencies. Each column is an octave. Magic factor = $2^{(1/12)}$. C3 = 261.63, A4 = 440.00

"Adding" Sinusoids \rightarrow averaging the sine values

Fs = 32768; tFinal = 1;

- C3 = 261.62;
- yC3 = sin(2*pi*C3*t);
- A4 = 440.00;
- yA4 = sin(2*pi*A4*t);
- y = (yC3 + yA4)/2;

sound(y,Fs)

Application: touchtone telephones

Make a signal by combining two sinusoids

A frequency is associated with each row & column. So two frequencies are associated with each button.

Signal for button 5:

- Fs = 32768;
- tFinal = .25;
- t = 0:(1/Fs):tFinal;
- yR = sin(2*pi*770*t);
- yC = sin(2*pi*1336*t)
- y = (yR + yC)/2;

sound(y,Fs)

MakeShowPlay.m

playAllButtons.m

To Minimize Ambiguity...

- No frequency is a multiple of another
- The difference between any two frequencies does not equal any of the frequencies
- The sum of any two frequencies does not equal any of the frequencies

Why is this important?

I dial a number (send signal). The receiver of the signals get a "noisy" version of the real signal. How will the noisy data be interpreted?

SendNoisy.m

How to compare two signals (vectors)?

Given two vectors x and y of the same length, the cosine of the angle between the two vectors is a measure of the correlation between vectors x and y:

$$COS_{xy} = \frac{\left|\sum_{i=1}^{n} \chi_{i} Y_{i}\right|}{\sqrt{\sum_{i=1}^{n} \chi_{i}^{2}} \cdot \sqrt{\sum_{i=1}^{n} Y_{i}^{2}}}$$

Small cosine \rightarrow low correlation High cosine \rightarrow highly correlated How to compare two signals (vectors)?

Given two vectors x and y of the same length, the cosine of the angle between the two vectors is a measure of the correlation between vectors x and y:

$$COS_{xy} = \frac{\left|\sum_{i=1}^{n} \chi_{i} Y_{i}\right|}{\sqrt{\sum_{i=1}^{n} \chi_{i}^{2}} \cdot \sqrt{\sum_{i=1}^{n} Y_{i}^{2}}}$$

Small cosine \rightarrow low correlation High cosine \rightarrow highly correlated

cos_xy.m ShowCosines.m Sending and deciphering noisy signals

- Randomly choose a button
 - Choose random row and column numbers
- Construct the real signal (MakeShowPlay)
- Add noise to the signal (SendNoisy)
- Compute cosines to decipher the signals (ShowCosines)
- See Eg13_2

What does the signal look like for a multi-digit call?

Buttons pushed at equal time intervals

One of the most difficult problems is how to <u>segment</u> the multi-button signal!

Each band approximately matches one of the twelve "fingerprints." There is noise between the button pushes.

"Noisy" signal

Buttons pushed at unequal time intervals