- Previous Lecture:
- Working with sound files
- Today's Lecture:
- Frequency computation
- Touchtone phone
- Announcement:
- Discussion in the computer lab this week. Bring headphones.
- Prelim 3 tonight at 7:30pm, Statler Auditorium
- Lastnames A-O: main seating area
- Lastnames P-Z: balcony

We looked at the time domain

Time

What about the frequency domain?

>> phone

A "pure-tone" sound is a sinusoidal function

$$
\begin{aligned}
& y(t)=\sin (2 \pi \underline{\omega t}) \\
& \underline{\omega}=\text { the frequency }
\end{aligned}
$$

Higher frequency means that $y(t)$ changes more rapidly with time.

Digitize for Graphics

Digitize for Sound

\% Sample "Rate"
n = 200
\% Sample times
tFinal = 1;
t = 0:(1/n):tFinal
\% Digitized Plot...
omega = 8;
$y=\sin \left(2^{*}\right.$ pi * omega $\left.^{*} t\right)$
plot(t,y)
\% Sample Rate
Fs $=32768$
\% Sample times
tFinal = 1;
t = 0:(1/Fs):tFinal
\% Digitized sound... omega = 800; $y=\sin \left(2^{*}\right.$ pi*omega*t $\left.^{*}\right)$; sound(y, Fs)

Equal-Tempered Tuning

A	55.00	110.00	220.00	440.00	880.00	1760.00
A\#	58.27	116.54	233.08	466.16	932.33	1864.66
B	61.74	123.47	246.94	493.88	987.77	1975.53
3 C	65.41	130.81	261.63	523.25	1046.50	2093.01
c\#	69.30	138.59	277.18	554.37	1108.73	2217.46
D	73.42	146.83	293.67	587.33	1174.66	2349.32
6 D\#	77.78	155.56	311.13	622.25	1244.51	2489.02
E	82.41	164.81	329.63	659.26	1318.51	2637.02
8 F	87.31	174.61	349.23	698.46	1396.91	2793.83
F\#	92.50	185.00	369.99	739.99	1479.98	2959.95
10 G	98.00	196.00	391.99	783.99	1567.98	3135.96
$11 \mathrm{G} \#$	103.83	207.65	415.31	830.61	1661.22	3322.44
12 A	110.00	220.00	440.00	880.00	1760.00	3520.00

Entries are frequencies. Each column is an octave.
 Magic factor $=2^{\wedge}(\mathrm{I} / \mathrm{I} 2) . \mathrm{C} 3=261.63, \mathrm{~A} 4=440.00$

"Adding" Sinusoids

Middle C:
$\omega=262$

A above middle C :
$\omega=440$

playTwoNotes.m
"Adding" Sinusoids \rightarrow averaging the sine values

$$
\begin{aligned}
& \text { Fs }=32768 ; \text { tFinal }=1 ; \\
& \mathrm{t}=0:(1 / F s): \text { tFinal; } \\
& \mathrm{C} 3=261.62 ; \\
& \mathrm{yC3}=\sin \left(2^{*} \mathrm{pi}^{*} \mathrm{C} 3^{*} \mathrm{t}\right) ; \\
& \mathrm{A} 4=440.00 ; \\
& \mathrm{yA}=\sin \left(2^{*} \mathrm{pi}^{*} A 4 * t\right) ; \\
& y=(y C 3+y A 4) / 2 ;
\end{aligned}
$$

sound (y, Fs)

Application: touchtone telephones

Make a signal by combining two sinusoids

A frequency is associated with each row \& column. So two frequencies are associated with each button.

The "5"-Button corresponds to
$(770,1336)$

Each button has its own 2-frequency "fingerprint"!

Signal for button 5:

Fs = 32768; tFinal = .25;
$t=0:(1 / F s): t F i n a l ;$
yR $=\sin (2 * p i * 770 * t) ;$
$y C=\sin (2 * p i * 1336 * t)$
$y=(y R+y C) / 2$;
sound (y, Fs)

Original Signal (Row = 2, Col = 2)

This is the "fingerprint" of button '5'
playAllButtons.m

To Minimize Ambiguity...

- No frequency is a multiple of another
- The difference between any two frequencies does not equal any of the frequencies
- The sum of any two frequencies does not equal any of the frequencies

Why is this important?
I dial a number (send signal). The receiver of the signals get a "noisy" version of the real signal. How will the noisy data be interpreted?

SendNoisy.m

How to compare two signals (vectors)?

Given two vectors x and y of the same length, the cosine of the angle between the two vectors is a measure of the correlation between vectors x and y :

$$
\cos _{x y}=\frac{\left|\sum_{i=1}^{n} x_{i} y_{i}\right|}{\sqrt{\sum_{i=1}^{n} x_{i}^{2}} \cdot \sqrt{\sum_{i=1}^{n} y_{i}^{2}}}
$$

Small cosine \rightarrow low correlation High cosine \rightarrow highly correlated

How to compare two signals (vectors)?

Given two vectors x and y of the same length, the cosine of the angle between the two vectors is a measure of the correlation between vectors x and y :

$$
\cos _{x y}=\frac{\left|\sum_{i=1}^{n} x_{i} y_{i}\right|}{\sqrt{\sum_{i=1}^{n} x_{i}^{2}} \cdot \sqrt{\sum_{i=1}^{n} y_{i}^{2}}}
$$

Small cosine \rightarrow low correlation
High cosine \rightarrow highly correlated
cos_Xy.m ShowCosines.m

Sending and deciphering noisy signals

- Randomly choose a button
- Choose random row and column numbers
- Construct the real signal (MakeShowPlay)
- Add noise to the signal (SendNoisy)
- Compute cosines to decipher the signals (ShowCosines)
- See Eg13_2

What does the signal look like for a multi-digit call?
"Perfect" signal

Buttons pushed at equal time intervals

One of the most difficult problems is how to segment the multi-button signal!

Each band approximately matches one of the twelve "fingerprints." There is noise between the button pushes.

