
Previous Lecture:
Review matrix, cell array, structure array

Today’s Lecture:
Working with sound files
Review vector, graphics, struct array, cell array

Announcements:
P5 due Friday at 11pm
Prelim 3 Tuesday 7:30pm

Sound (today’s topic) will NOT be on prelim 3
Review session Sunday 1:30-3pm, location TBA 



Digital display of a whole number

Example:  showNumber(2010)

Need to convert the number to a vector of digits
2010 [2 0 1 0]

Then display the digits in the vector side-by-side



function showNumber(n)
% Digital display of integer n, n>0

hold on; axis equal off

% Convert n to a vector of digits

% Display the digits in v
D = TheDigits();  % D{k} is matrix encoding digit k



function showNumber(n)
% Digital display of integer n, n>0

hold on; axis equal off

% Convert n to a vector of digits

% Display the digits in v
D = TheDigits();  % D{k} is matrix encoding digit k
for k=1:length(v)

index= v(k);
if index==0

index= 10;
end
drawDigit(k,1,1,D{index})

end



function showNumber(n)
% Digital display of integer n, n>0

hold on; axis equal off

% Convert n to a vector of digits
v= [];
while n>0

v= [rem(n,10) v];
n= floor(n/10);

end

% Display the digits in v
D = TheDigits();  % D{k} is matrix encoding digit k
for k=1:length(v)

index= v(k);
if index==0

index= 10;
end
drawDigit(k,1,1,D{index})

end



How to calculate the difference between 2 bitmaps?

– =

A B C

C(i,j) = abs( A(i,j) - B(i,j) )



% A and B have same size
[nr,nc]= size(A);
B= zeros(nr,nc);
for r= 1:nr

for c= 1:nc
C(r,c)= abs(A(r,c)-B(r,c));

end
end

% A and B have same size
C= abs(A-B);

C is a 0-1 matrix where 1 indicates that
A(i,j) and B(i,j) are different.



Lecture 22 9

Reading and playing .wav files

[y,rate,nBits] = wavread(‘austin.wav’)
sound(y,rate)

A wav file is for the computer to process—
software is required to play the sound.

Computing with sound in Matlab requires that we 
first convert the wav format data into simple 
numeric data—the job of wavread.



Lecture 22 10

Computing with sound requires digitization

Sound is continuous; capture its essence by sampling
Digitized sound is a vector of numbers



Lecture 22 11

Sampling rate affects the quality

If sampling not frequent enough, then the discretized
sound will not capture the essence of the continuous 
sound…

Too slow

OK



Lecture 22 12

Sampling Rate

Given human perception, 20000 samples/second 
is pretty good  (20000Hz or 20kHz)

8,000 Hz required for speech over the
telephone 

44,100 Hz required for audio CD

192,400 Hz  required for HD-DVD  
audio tracks



Lecture 22 13

Resolution also affects the quality

Typically, each sampled value is encoded as an 8-
bit integer in the .wav file.

Possible values: -128, -127,…,-1,0,1,…,127

Loud:  -120, 90, 122, etc.

Quiet:  3, 10, -5

16-bit used when very high quality is required.

Magnitude 
determines loudness



wavread converts the 8-bit values to floating point values 
between -1 and 1

0.4609
0.3516
0.2734
0.2891
0.2500
0.1484
0.1094
0.1641
0.1484
0.0000

-0.1641
-0.2734
-0.3281

y(50000:50012)

[y,rate,nBits]= wavread(‘austin.wav’)



Lecture 22 15

[data,rate,nBits]= wavread(‘austin.wav’)

The vector of 
sampled sound 
values is 
assigned to 
this variable

The sampling 
rate is 
assigned to 
this variable

The 
resolution is 
assigned to 
this variable

Name of the 
source file

wavread



Lecture 22 16

wavread

[y,rate,nBits]= wavread(‘austin.wav');
n = length(y);

n = 
54453

rate =
11025

nBits =
8

austin.wav
encoded the sound with 
54,453  8-bit numbers that 
were taken at 11025 samples 
per second

What is the play duration?

A:  rate*n

B:  rate/n C:  n/rate

D:  none of the above



Hearing and “seeing” the sound

[y,rate]=  wavread(‘austin’);
sound(y, rate)
plot(1:length(y), y)

0 1 2 3 4 5 6

x 10
4

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Austin Powers

Usually playback at a 
rate equal to the 
sampling rate

See showAustin.m



Lecture 22 18

movies.m



Lecture 22 19

Example:  playlist

Suppose we have a set of .wav files, e.g.,

austin.wav
sp_beam.wav
sp_oz6.wav

and wish to play them in succession.



Lecture 22 20

Possible solution

playList = {'austin',…
'sp_beam',…
'sp_oz6'};

for k=1:length(playList)
[y,rate] = wavread(playList{k});
sound(y,rate)

end



Lecture 22 23

Store the data from wav files as a struct array for 
play back later

function SA = wavSegments(wnames)
% Build a struct array SA such that 
%   SA(k).data stores the data of wnames{k}
%   SA(k).rate stores the sampling rate of
%               wav file wnames{k}

for k= 1:length(wnames)
[y,rate] = wavread(wnames{k});
SA(k)= struct('data', y, 'rate', rate);

end



Lecture 22 24

function playSegments(SA)
% Play sound data stored in struct array SA.
%   SA(k).data stores the k-th segment of 
%               sound data (from wavread)
%   SA(k).rate is sampling rate of k-th seg.

for k= 1:length(SA)
theData= SA(k).data;
theRate= SA(k).rate;
sound(theData,theRate)

end

Next call to sound will 
not begin until after the 
previous call is complete.

Not true in older 
versions!  Calculate and 
add your own pause in 
that case.  


