- Previous Lecture (and Lab):
- Intro to the course, "Computational senses"
- The Matlab Command Window
- Today's Lecture:
- Anatomy of a program
- Variables, assignment, mathematical operations
- Functions for input \& output
- Announcements
- Due to the fixed lab capacity, you must attend the section in which you are enrolled
- Consulting begins this Sunday in ACCEL Green Room (Engineering Library)
- AEW openings in W7:30pm and R2:30p sections

Surface Area Increase

```
>> r = 6365;
>> delta = .000001;
>> A_plus = 4*pi*(r+delta)^2;
>> A = 4*pi*r^2;
>> Increase = A_plus - A
Increase =
    0.15996992588043
```

 Lecture 2

Surface Area Increase

```
>> r = 6365;
>> delta = .000001;
>> A_plus = 4*pi*(r+delta)^2;
>> A = 4*pi*r^2;
>> Increase = A_plus - A
Increase =
    0.15996992588043
```


Formula

- Surface area of a sphere? $\quad A=4 \pi r^{2}$
- Have the cosine of some angle and want $\cos (\theta / 2)$? $\theta \in\lfloor 0, \pi / 2\rfloor$

$$
\cos (\theta / 2)=\sqrt{\frac{1+\cos (\theta)}{2}}
$$

A computer program

Variable \& assignment

- Variable: a named computer memory space for storing a value

- Valid names start with a letter, can contain digits
- Use meaningful variable names!

Variable \& assignment

- Variable: a named space for storing a value

- Assignment: putting a value into a variable
- Assignment operator: =
- An assignment statement: $r=2 * 4.5$
- Expression on right-hand-side (rhs) is evaluated before the assignment operation

Assignment

- Expression on rhs is evaluated before the assignment operation
- Examples:
x= 2*3.14
$y=1+x$
$z=4 \wedge 2-\cos (y)$
- Question: can we reverse the order of the 3 statements above?

Script execution
(A script is a sequence of statements, an " m-file")
\% Quad1
Memory space
Solves $x^{\wedge 2}+5 x+6=0$
a $=1$;
b $=5$;
c $=6$;
d $=\operatorname{sqrt}\left(b^{\wedge 2}-4^{*} a^{*} c\right)$;
r1 = (-b - d)/(2*a)
r2 = (-b + d)/(2*a)

Statements in a program are executed in sequence
\% A program fragment ...
x= 2*3.14
$y=1+x$
$\mathrm{x}=5$
\% What is y now?

A: 6 B: 7.28 C: some other value, or error
\% Example 1_1: Surface area of a sphere
\% A: surface area of the sphere
$\% ~ r$: radius of the sphere
$r=$ input('Enter the radius: ');
$A=4 * 3.14159 *{ }^{*}$ r ;
fprintf('Surface area is \%f.\n', A);

```
Input & output
```

Input \& output

- variable = input('prompt ')
- variable = input('prompt ')
r= input('Enter radius: ')
r= input('Enter radius: ')
- fprintf('message to print ')
- fprintf('message to print ')
fprintf('Increase ')
fprintf('Increase ')
fprintf('is %f inches\n', x)
fprintf('is %f inches\n', x)
fprintf('Position (%d,%d)\n', x,y)

```
    fprintf('Position (%d,%d)\n', x,y)
```


Comments

- For readability!
- A comment starts with \% and goes to the end of the line
- Start each program (script) with a concise description of what it does
- Define each important variable/constant
- Top a block of code for a specific task with a concise comment

Example

Modify the previous program to calculate the increase in surface area given an increase in the radius of a sphere.

Note: I mile = 5280 feet

What's next?

- So far, all the statements in our scripts are executed in order
- We do not have a way to specify that some statements should be executed only under some condition
- We need a new language construct...

```
% Example 1_2: Surface area increase
% given an increase in the radius
r= input('Enter radius r in miles: ');
delta= input('Enter delta r in inches: ');
```

Consider the quadratic function

$$
q(x)=x^{2}+b x+c
$$

on the interval $[L, R]$:
-Is the function strictly increasing in $[L, R]$?
-Which is smaller, $q(L)$ or $q(R)$?
-What is the minimum value of $q(x)$ in $[L, R]$?

