
Previous Lecture:
Characters and strings

Today’s Lecture:
More on characters and strings
Cell arrays

Announcement:
Project 4 due Monday 4/4 at 11pm

Lecture 17 2

ASCII characters
(American Standard Code for Information Interchange)

ascii code Character
: :
: :
65 ‘A’
66 ‘B’
67 ‘C’
: :
90 ‘Z’
: :

ascii code Character
: :
: :
48 ‘0’
49 ‘1’
50 ‘2’
: :
57 ‘9’
: :

Lecture 17 3

Example: toUpper

Write a function toUpper(cha) to convert character cha to
upper case if cha is a lower case letter. Return the
converted letter. If cha is not a lower case letter, simply
return the character cha.

Hint: Think about the distance between a letter and the
base letter ‘a’ (or ‘A’). E.g.,

a b c d e f g h …

A B C D E F G H …

Of course, do not use Matlab function upper!

distance = ‘g’-‘a’ = 6 = ‘G’-‘A’

Lecture 17 4

function up = toUpper(cha)
% up is the upper case of character cha.
% If cha is not a letter then up is just cha.

Lecture 17 5

function up = toUpper(cha)
% up is the upper case of character cha.
% If cha is not a letter then up is just cha.

up= cha;

cha is lower case if it is between ‘a’ and ‘z’

Lecture 17 6

function up = toUpper(cha)
% up is the upper case of character cha.
% If cha is not a letter then up is just cha.

up= cha;

if (cha >= 'a' && cha <= 'z')

% Find distance of cha from ‘a’

end

Lecture 17 7

function up = toUpper(cha)
% up is the upper case of character cha.
% If cha is not a letter then up is just cha.

up= cha;

if (cha >= 'a' && cha <= 'z')

% Find distance of cha from ‘a’
offset= cha - 'a';

% Go same distance from ‘A’

end

Lecture 17 8

function up = toUpper(cha)
% up is the upper case of character cha.
% If cha is not a letter then up is just cha.

up= cha;

if (cha >= 'a' && cha <= 'z')

% Find distance of cha from ‘a’
offset= cha - 'a';

% Go same distance from ‘A’
up= char('A' + offset);

end

Lecture 17 9

Example: removing all occurrences of a character

From a genome bank we get a sequence
ATTG CCG TA GCTA CGTACGC AACTGG
AAATGGC CGTAT…

First step is to “clean it up” by removing all the
blanks. Write this function:

function s = removeChar(c, s)
% Return string s with all occurrences
% of character c removed

Lecture 17 10

Example: removing all occurrences of a character

Can solve this problem using iteration—check one
character (one component of the vector) at a time

function s = removeChar_loop(c, s)
% Return string s with all occurrences of
% character c removed.

Lecture 17 11

Example: removing all occurrences of a character

Can solve this problem using iteration—check one
character (one component of the vector) at a time

function s = removeChar_loop(c, s)
% Return string s with all occurrences of
% character c removed.

t= [];
for k= 1:length(s)

end
s= t;

Lecture 17 12

Example: removing all occurrences of a character

Can solve this problem using iteration—check one
character (one component of the vector) at a time

function s = removeChar_loop(c, s)
% Return string s with all occurrences of
% character c removed.

t= [];
for k= 1:length(s)

if s(k)~=c
t= [t s(k)];

end
end
s= t;

Lecture 18 13

Example: censoring words

function D = censor(str, A)
% Replace all occurrences of string str in
% character matrix A with X’s, regardless of
% case.
% Assume str is never split across two lines.
% D is A with X’s replacing str.

A
U s M A T L A Be
i n t h a t l a b .

U s M A T X X Xe
i n t h a t X X X .

D
cen

sor

‘lab
’

Lecture 17 14

function D = censor(str, A)
% Replace all occurrences of string str in character matrix A,
% regardless of case, with X's.
% A is a matrix of characters.
% str is a string. Assume that str is never split across two lines.
% D is A with X's replacing the censored string str.

D= A;
B= lower(A);
s= lower(str);
ns= length(str);
[nr,nc]= size(A);

% Build a string of X's of the right length

% Traverse the matrix to censor string str

Lecture 17 15

function D = censor(str, A)
% Replace all occurrences of string str in character matrix A,
% regardless of case, with X's.
% A is a matrix of characters.
% str is a string. Assume that str is never split across two lines.
% D is A with X's replacing the censored string str.

D= A;
B= lower(A);
s= lower(str);
ns= length(str);
[nr,nc]= size(A);

% Build a string of X's of the right length
Xs= char(zeros(1,ns));
for k= 1:ns

Xs(k)= 'X';
end

% Traverse the matrix to censor string str

zeros returns an array of type double

Lecture 17 16

function D = censor(str, A)
% Replace all occurrences of string str in character matrix A,
% regardless of case, with X's.
% A is a matrix of characters.
% str is a string. Assume that str is never split across two lines.
% D is A with X's replacing the censored string str.

D= A;
B= lower(A);
s= lower(str);
ns= length(str);
[nr,nc]= size(A);

% Build a string of X's of the right length
Xs= char(zeros(1,ns));
for k= 1:ns

Xs(k)= 'X';
end

% Traverse the matrix to censor string str
for r= 1:nr

for c= 1:nc-ns+1
if strcmp(s , B(r, c:c+ns-1))==1

D(r, c:c+ns-1)= Xs;
end

end
end

Lecture 18 18

Matrix vs. Cell Array

3.1

2

-1

9

1.1

‘c’ ‘o’ ‘m’ ‘ ’ ‘s’

‘1’ ‘1’ ‘1’ ‘2’ ‘ ’

‘ ’ ‘ ’ ‘L’ ‘A’ ‘B’

‘M’ ‘a’ ‘t’ ‘ ’ ‘ ’

Vectors and matrices store
values of the same type in
all components

A cell array is a special array
whose individual components
may contain different types of
data

.4‘M’ -1 7

.91

5

-4 -1

7

‘ ’‘.’ ‘ ’

‘m’‘c’ ‘o’

3 × 2 cell array

4 x 5
matrix5 x 1

matrix

Cell Arrays of Strings

C= { ‘Alabama’,’New York’,’Utah’}

C ‘Alabama’ ‘New York’ ‘Utah’

C= { ‘Alabama’;’New York’;’Utah’}

‘Alabama’

‘New York’

‘Utah’

C

1-d cell
array of
strings

M= [‘Alabama ’; ...
‘New York’; ...
‘Utah ’]

‘A’ ‘l’ ‘a’ ‘b’ ‘a’

‘N’ ‘e’ ‘w’ ‘ ‘ ‘Y’

‘U’ ‘t’ ‘h’

‘m’ ‘a’

‘o’ ‘r’ ‘k’

‘ ‘

‘ ‘‘a’ ‘ ‘‘ ‘‘ ‘

M

Contrast with
2-d array of characters

Lecture 18 20

Use braces { } for creating and addressing cell arrays

Matrix

Create

m= [5, 4 ; …
1, 2 ; …
0, 8]

Addressing

m(2,1)= pi

Cell Array

Create

C= { ones(2,2), 4 ; …
‘abc’ , ones(3,1) ; …
9 , ‘a cell’ }

Addressing

C{2,1}= ‘ABC’
C{3,2}= pi
disp(C{3,2})

Lecture 18 21

Creating cell arrays…

C= {‘Oct’, 30, ones(3,2)};

is the same as
C= cell(1,3); % not necessary
C{1}= ‘Oct’;
C{2}= 30;
C{3}= ones(3,2);

You can assign the empty cell array: D = {}

Lecture 18 22

D{1} = ‘A Hearts’;
D{2} = ‘2 Hearts’;

:
D{13} = ‘K Hearts’;
D{14} = ‘A Clubs’;

:
D{52} = ‘K Diamonds’;

Example: Represent a deck of cards with a cell array

But we don’t want to have to type all combinations of suits
and ranks in creating the deck… How to proceed?

Lecture 18 23

suit = {‘Hearts’, ‘Clubs’, …
‘Spades’, ‘Diamonds’};

rank = {‘A’,‘2’,’3’,’4’,’5’,’6’,…
’7’,’8’,’9’,’10’,’J’,’Q’,’K’};

Then concatenate to get a card. E.g.,

str = [rank{3} ‘ ’ suit{2}];
D{16} = str;

So D{16} stores ‘3 Clubs’

Make use of a suit array and a rank array …

Lecture 18 24

i = 1; % index of next card

for k= 1:4
% Set up the cards in suit k
for j= 1:13

D{i} = [rank{j} ' ' suit{k}];
i = i+1;

end
end

To get all combinations, use nested loops

See function CardDeck

Lecture 18 25

N: 1,5,9

E: 2,6,10

S: 3,7,11

W: 4,8,12

D:

4k-3

4k-2

4k-1

4k

Example: deal a 12-card deck

Lecture 18 26

% Deal a 52-card deck
N = cell(1,13); E = cell(1,13);
S = cell(1,13); W = cell(1,13);

for k=1:13
N{k} = D{4*k-3};
E{k} = D{4*k-2};
S{k} = D{4*k-1};
W{k} = D{4*k};

end
See function Deal

Lecture 18 27

A B LC D E F G H I J K

The “perfect shuffle” of a 12-card deck

Lecture 18 28

A B LC D E F G H I J K

A B C D E F

LG H I J K

Step 1: Cut the deck

Lecture 18 29

Step 2: Alternate

A B LC D E F G H I J K

A B C D E F

LG H I J K

A G LB H C I D J E K F
1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6

Lecture 18 30

Step 2: Alternate

A B LC D E F G H I J K

A B C D E F

LG H I J K

A G LB H C I D J E K F
1 3 5 7 9 11

1 2 3 4 5 6

k

2k-1

Lecture 18 31

Step 2: Alternate

A B LC D E F G H I J K

A B C D E F

LG H I J K

A G LB H C I D J E K F
2 4 6 8 10 12

1 2 3 4 5 6
k

2k

Lecture 18 32

Shuffle.m

