- Previous Lecture:
- Working with images
- Today's Lecture:
- Characters and strings
- Announcements:
- Prelim 2 will be returned at end of lecture. If your paper isn't here, pick it up from CSIII2 consultants in ACCEL during consulting hrs (starting today after 4 pm)
- Discussion this week in classrooms as listed on roster
- Project 4 posted. Due Mon, Apr $4^{\text {th }}$, at 11 pm

Characters \& strings

- We have used strings already:
- $\mathrm{n}=$ input('Next number: ')
- sprintf('Answer is \%d', ans)
- A string is made up of individual characters, so a string is a I-d array of characters
- 'CS1112 rocks!' is a character array of length 13; it has 7 letters, 4 digits, I space, and I symbol.

$$
{ }^{\circ} \mathrm{C}^{\prime \prime} \mathrm{S}^{\prime \prime} 1^{\prime \prime} 1^{\prime \prime} 1^{\prime \prime} 2^{\prime \prime}{ }^{\prime \prime} r^{\prime \prime} \mathrm{o}^{\prime \prime} \mathrm{c}{ }^{\prime \prime} \mathrm{k}^{\prime \prime} \mathrm{s}^{\prime \prime}!
$$

- Can have 2-d array of characters as well

$$
\mathrm{C}^{\mathrm{C}^{\prime \prime} \mathbf{S}^{\prime \prime} \mathbf{1}^{\prime \prime} \mathbf{1}^{\prime \prime \prime} \mathbf{1}^{\prime \prime} \mathbf{2}^{\prime \prime}}{ }^{\prime} \mathrm{r}^{\prime \prime} \mathbf{o}^{\prime \prime} \mathbf{c}^{\prime \prime} \mathbf{k}^{\prime \prime} \mathbf{s}^{\prime \prime \prime}!^{\prime}{ }_{2 \times 6 \text { matrix }}
$$

Strings are important in computation
Numerical data is often encoded in strings. E.g., a file containing Ithaca weather data begins with the string W07629N4226
meaning

$$
\begin{array}{ll}
\text { Longitude: } & 76^{\circ} 29^{\prime} \text { West } \\
\text { Latitude: } & 42^{\circ} 26^{\prime} \text { North }
\end{array}
$$

We may need to grab hold of the substring W07629, convert 076 and 29 to the numeric values 76 and 29 , and do some computation

Lecture 17

Single quotes enclose strings in Matlab

Anything enclosed in single quotes is a string (even if it looks like something else)

- ' 100 ' is a character array (string) of length 3
- 100 is a numeric value
- 'pi' is a character array of length 2
- pi is the built-in constant 3.1416...
- ' X ' is a character (vector of length I)
- X may be a variable name in your program

Strings are vectors	
Vectors - Assignment $\mathrm{v}=\left[\begin{array}{lll} 7 & 0 & 5 \end{array}\right] ;$ - Indexing $\begin{array}{ll} \mathrm{x}=\mathrm{v}(3) ; & \% \mathrm{x} \text { is } 5 \\ \mathrm{v}(\mathrm{I})=1 ; & \% \mathrm{v} \text { is }\left[\begin{array}{lll} 1 & 0 & 5 \end{array}\right] \\ \mathrm{w}=\mathrm{v}(2: 3) ; & \% \mathrm{w} \text { is }\left[\begin{array}{lll} 0 & 5 \end{array}\right] \end{array}$ - : notation $v=2: 5 ; \quad \% v \text { is }\left[\begin{array}{llll} 2 & 3 & 4 & 5 \end{array}\right]$ - Appending $\begin{aligned} & \mathrm{v}=\left[\begin{array}{lll} 7 & 0 & 5 \end{array}\right] ; \\ & \mathrm{v}(4)=2 ; \end{aligned} \quad \% \text { is }\left[\begin{array}{llll} 7 & 0 & 5 & 2 \end{array}\right]$ - Concatenation $\mathrm{v}=[\mathrm{v}[46]] ;$ \% vis [7 0524 6]	Strings - Assignment s= 'hello'; - Indexing $\begin{array}{ll} \mathrm{c}=\mathrm{s}(2) ; & \% \mathrm{c} \text { is }{ }^{\prime} \mathrm{e} \text { ' } \\ \mathrm{s}(\mathrm{I})=\mathrm{\prime} \mathrm{~J} ; & \% \mathrm{~s} \text { is ' } \mathrm{elllo} \\ \mathrm{t}=\mathrm{s}(2: 4) ; & \% \mathrm{t} \text { is 'ell' } \end{array}$ - : notation $\mathrm{s}=\mathrm{a} \mathrm{a}: \text { ':g'; \% s is 'abcdefg' }$ - Appending s= ‘duck’; $s(5)=$ ' s '; \% s is 'ducks' - Concatenation s= [s ' quack']; \% s is 'ducks quack'
	Leture 17

```
Some useful string functions
str= 'Cs 1112';
length(str) % 7
isletter(str) % [1 1 0 0 0 0 0]
isspace(str) % [0 0 1 0 0 0 0]
lower(str) % 'cs 1112'
upper(str) % 'CS 1112'
ischar(str)
    % Is str a char array? True (1)
strcmp(str(1:2),'cs')
    % Compare strings str(1:2) & 'cs'. False (0)
strcmp(str(1:3),'CS')
    % False (0)
```

ASCII characters (American Standard Code for Information Interchange)				
ascii code	Character	ascii code	Character	
:	:	:	:	
:	:	:	:	
65	'A'	48	'0'	
66	'B'	49	'I'	
67	'C'	50	'2'	
:	:	:	:	
90	'Z'	57	'9'	
:	:	:	:	
Leture 17				${ }^{11}$

```
Arithmetic and relational ops on characters
- 'c' - 'a' gives 2
- '6' - '5' gives I
- letter1='e'; letter2='f';
- letter1-letter2 gives -I
- 'c'>'a' gives true
- letter1==letter2 gives false
- ' \(A\) ' +2 gives 67
- char ( \({ }^{\prime} A^{\prime}+2\) ) gives 'C'
```

What is in variable g}\mathrm{ (if it gets created)?
d1= 'Mar 3'; d2= 'Mar 9';
x1= d1(5); x2= d2(5);
g= x2-x1;

```
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{What is in variable \(g\) (if it gets created)?} \\
\hline ```
d1= 'Mar 13'; d2= 'Mar 29';
x1= d1(5:6); x2= d2(5:6);
g= x2-x1;
``` & \\
\hline A: the string ' 16 ' & \\
\hline B: the numeric value 16 & \\
\hline C: Error in the subtraction operation & \\
\hline D: Error in assigning variables \(\mathbf{x 1 , x 2}\) & \\
\hline E: Some other value or error & \\
\hline Lexure 17 & 15 \\
\hline
\end{tabular}```

