- Previous Lecture:
 - Working with images
- Today's Lecture:
 - Characters and strings
- Announcements:
 - Prelim 2 will be returned at end of lecture. If your paper isn't here, pick it up from CSIII2 consultants in ACCEL during consulting hrs (starting today after 4pm)
 - Discussion this week in classrooms as listed on roster
 - Project 4 posted. Due Mon, Apr 4th, at 11pm

Characters & strings

- We have used strings already:
 - n = input('Next number: ')
 - sprintf('Answer is %d', ans)
- A string is made up of individual characters, so a string is a I-d array of characters
- 'CS1112 rocks!' is a character array of length 13; it has 7 letters, 4 digits, 1 space, and 1 symbol.

Can have 2-d array of characters as well

Matlab types: char, double, uint8, logical There is not a type "string"! What we call a string is a <u>1-d array of chars</u> a is a 1-d array with type char components. We call a a "string" or "char array" a 'C'S'1' b is a 1-d array with type double $b = [3 \ 9]$ components. double is the default type for numbers in Matlab. We call **b** a "numeric array" c is a I-d array with type uint8 c = uint8(b)components. We call c a "uint8 array" ${\tt d}$ is a scalar of the type logical. We call ${\tt d}$ d = rand > .5a "boolean value"

Strings are important in computation

Numerical data is often encoded in strings. E.g., a file containing Ithaca weather data begins with the string

W07629N4226

meaning

Longitude: 76° 29' West Latitude: 42° 26' North

We may need to grab hold of the substring w07629, convert 076 and 29 to the numeric values 76 and 29, and do some computation

Lecture 17

Comparison of genomic sequences is another example of string computation

- E.g., looking for a pattern:
 Given the sequence ATTCTGACCTCGATC...
 Look for the pattern ACCT
- E.g., quantifying the difference between sequences:

ATTCTGACCTCGATC ATTCGTGACCTCGAT What if this nucleotide is removed?

Single quotes enclose strings in Matlab

Anything enclosed in single quotes is a string (even if it looks like something else)

- 100' is a character array (string) of length 3
- 100 is a numeric value
- 'pi' is a character array of length 2
- pi is the built-in constant 3.1416...
- \mathbf{x}' is a character (vector of length I)
- x may be a variable name in your program

ecture 17

Lecture slides 1


```
Some useful string functions

str= 'Cs 1112';

length(str) % 7

isletter(str) % [1 1 0 0 0 0 0]

isspace(str) % [0 0 1 0 0 0 0]

lower(str) % 'cs 1112'

upper(str) % 'CS 1112'

ischar(str)

% Is str a char array? True (1)

strcmp(str(1:2),'cs')

% Compare strings str(1:2) & 'cs'. False (0)

strcmp(str(1:3),'Cs')

% False (0)
```

```
Example: capitalize Ist letter

Write a function to capitalize the first letter of each word in a string. Assume that the string has lower case letters and blanks only. (OK to use built-in function upper)

function [str, nCaps] = caps(str)
% Post: Capitalize first letter of each word.
% str = partially capitalized string
% nCaps = no. of capital letters
% Pre: str = string with lower case letters & blanks only

look for the spaces
Look For The Spaces

See caps.m
```



```
Character vs ASCII code

str= 'Age 19'
%a 1-d array of characters
code= double(str)
%convert chars to ascii values
str1= char(code)
%convert ascii values to chars
```

```
Arithmetic and relational ops on characters

'c'-'a' gives 2
'6'-'5' gives I

letter1='e'; letter2='f';

letter1-letter2 gives -I

'c'>'a' gives true

letter1==letter2 gives false

'A' + 2 gives 67

char('A'+2) gives 'C'
```

Lecture slides 2

Lecture slides 3