- Previous Lecture:

- Examples on vectors (I-d arrays)
- Today's Lecture:
- 2-d array-matrix

- Announcements:

- Discussion in classrooms this week, not computer lab
- Project 3 due on Thursday at 11 pm
- Prelim 2 on Thurs, 3/17, 7:30-9pm. Email Randy Hess if you have an exam conflict with another course. rbhess@cs.cornell.edu

- An array is a named collection of like data organized into rows and columns
- A 2-d array is a table, called a matrix
- Two indices identify the position of a value in a matrix, e.g.,

$$
\operatorname{mat}(r, c)
$$

\qquad
refers to component in row r, column c of matrix mat

- Array index starts at I
- Rectangular: all rows have the same \#of columns

Creating a matrix

- Built-in functions: ones, zeros, rand
- E.g., zeros(2,3) gives a 2 -by- 3 matrix of 0 s
- "Build" a matrix using square brackets, [], but the dimension must match up:
- [$x y]$ puts y to the right of x
- [x; y] puts y below x

- [4 0 3; ones(3,I)] doesn't work

Working with a matrix: size and individual components	2	-1	. 5	0	-3
	3	8	6	7	7
Given a matrix M	5	-3	8.5	9	10
	52	81	. 5	7	2
$\begin{array}{ll} {[\mathrm{nr}, \mathrm{nc}]=\operatorname{size}(\mathrm{M})} & \% \mathrm{nr} \text { is \#of rows, } \\ & \% \mathrm{nc} \text { is \#of columns } \end{array}$					
$\begin{aligned} & \mathrm{nr}=\operatorname{size}(\mathrm{M}, 1) \quad \% \text { \# of rows } \\ & \mathrm{nc}=\operatorname{size}(M, 2) \quad \% \text { of columns } \end{aligned}$					
$\begin{aligned} & M(2,4)=1 ; \\ & \operatorname{disp}(M(3,1)) \end{aligned}$					
$\mathrm{M}(1, \mathrm{nc})=4$;					
Leture 13					11

| Example: minimum value in a matrix | |
| :--- | :--- | :--- |
| function val = minlnMatrix(M) | |
| \% val is the smallest value in matrix M | |
| | |
| | |
| | |

```
Pattern for traversing a matrix M
[nr, nc] = size(M)
for r= l:nr
    % At row r
    for c= l:nc
        % At column c (in row r)
        %
        % Do something with M(r,c) ...
    end
end
```


Matrix example: Random Web

- N web pages can be represented by an N -byN Link Array A.
- $A(i, j)$ is I if there is a link on webpage j to webpage i
- Generate a random link array and display the connectivity:
- There is no link from a page to itself
- If $i \neq j$ then $A(i, j)=\|$ with probability $\frac{1}{1+|i-j|}$
\square There is more likely to be a link if i is close to j

A Cost/Inventory Problem

- A company has 3 factories that make 5 different products
- The cost of making a product varies from factory to factory
- The inventory/capacity varies from factory to factory

```
function A = RandomLinks(n)
% A is n-by-n matrix of 1s and 0s
% representing n webpages
A = zeros(n,n);
for i=1:n
    for j=1:n
                r = rand(1);
            if i~=j && r<= 1/(1 + abs(i-j));
                A(i,j) = 1;
            end
        end
end
```


Problems

A customer submits a purchase order that is to be filled by a single factory.
I. How much would it cost a factory to fill the order?
2. Does a factory have enough inventory/capacity to fill the order?
3. Among the factories that can fill the order, who can do it most cheaply?

The value of $\mathbf{C}(\mathbf{i}, \mathbf{j})$ is what it costs factory i to make product j .

The value of $\mathrm{PO}(\mathrm{j})$ is the number of product j 's that the customer wants

Leture 13

Encapsulate...

function TheBill $=$ iCost(i, $\mathbf{C}, \mathbf{P O})$
\% The cost when factory i fills the
\% purchase order
nProd $=$ length(PO);
TheBill = 0;
for $\mathrm{j}=1$: nProd
TheBill $=$ TheBill $+\mathbf{C (i , j) * P O (j) ; ~}$
end

Inventory (or Capacity) Array

Inv | 38 | 5 | 99 | 34 | 42 |
| :---: | :--- | :--- | :--- | :--- |
| 82 | 19 | 83 | 12 | 42 |
| 51 | 29 | 21 | 56 | 87 |

The value of $\operatorname{Inv}(\mathbf{i}, \mathbf{j})$ is the inventory in factory i of product j .

	10	36	22	15	62	
C	12	35	20	12	66	
	13	37	21	16	59	
P0	1	0	12	29	5	
Cost for factory i:	```s = 0; %Sum of cost for j=1:5 s = s + C(i,j)*PO(j) end```					
			Leture 1			${ }^{31}$

Finding the Cheapest

```
iBest = 0; minBill = inf;
for i=1:nFact
    iBill = iCost(i,C,PO);
    if iBill < minBill
        % Found an Improvement
        iBest = i; minBill = iBill;
    end
end
```

```
inf - a special value that can be regarded as
positive infinity
x = 10/0 assigns inf to x
y = 1+x assigns inf to y
z = 1/x assigns 0 to z
w < inf is always true if w is numeric
```

Inventory/Capacity Considerations

What if a factory lacks the inventory/capacity to fill the purchase order?

Such a factory should be excluded from the find-the-cheapest computation.

Wanted: A True/False Function

DO is "true" if factory i can fill the order.
DO is "false" if factory i cannot fill the order.

Encapsulate...

```
function DO = iCanDo(i,Inv,PO)
% DO is true if factory i can fill
% the purchase order. Otherwise, false
nProd = length(PO);
DO = 1;
for j = 1:nProd
            DO = DO && ( Inv(i,j) >= PO(j) );
end
```


Back To Finding the Cheapest

```
iBest = 0; minBill = inf;
for i=1:nFact
    if iCanDo(i,Inv,PO)
            iBill = iCost(i,C,PO);
            if iBill < minBill
            % Found an Improvement
                    iBest = i; minBill = iBill;
        end
    end
end
```

