
CS1112 Lecture 13

Lecture slides 1

 Previous Lecture:
 Examples on vectors (1-d arrays)

 Today’s Lecture:
 2-d array—matrix

 Announcements: Announcements:
 Discussion in classrooms this week, not computer lab
 Project 3 due on Thursday at 11pm
 Prelim 2 on Thurs, 3/17, 7:30-9pm. Email Randy Hess if you

have an exam conflict with another course.
rbhess@cs.cornell.edu

Storing and using data in tables

A company has 3 factories that make 5
products with these costs:

Connections
between webpages

10 36 22 15 62

Lecture 13 8

between webpages

0 0 1 0 1 0 0
1 0 0 1 1 1 0
0 1 0 1 1 1 1
1 0 1 1 0 1 0
0 0 1 1 0 1 1
0 0 1 0 1 0 1
0 1 1 0 1 1 0

C 12 35 20 12

13 37 21 16

66

59

What is the best way to fill a given
purchase order?

2-d array: matrix

 An array is a named collection of like data organized
into rows and columns

 A 2-d array is a table, called a matrix
 Two indices identify the position of a value in a matrix

c

r

Lecture 13 9

 Two indices identify the position of a value in a matrix,
e.g.,

mat(r,c)

refers to component in row r, column c of matrix mat
 Array index starts at 1
 Rectangular: all rows have the same #of columns

Creating a matrix

 Built-in functions: ones, zeros, rand
 E.g., zeros(2,3) gives a 2-by-3 matrix of 0s

 “Build” a matrix using square brackets, [], but
the dimension must match up:
 [x y] puts y to the right of x

Lecture 13 10

 [x y] puts y to the right of x
 [x; y] puts y below x
 [4 0 3; 5 1 9] creates the matrix
 [4 0 3; ones(1,3)] gives
 [4 0 3; ones(3,1)] doesn’t work

4 0 3

5 1 9

4 0 3

1 1 1

Working with a matrix:
size and individual components

Given a matrix M

[nr, nc]= size(M) % nr is #of rows,
% nc is #of columns

2 0.5-1 -3

52 7.581 2

5 98.5-3 10

3 768 7

Lecture 13 11

nr= size(M, 1) % # of rows
nc= size(M, 2) % # of columns

M(2,4)= 1;
disp(M(3,1))
M(1,nc)= 4;

% What will M be?
M = [ones(1,3); 1:4]

1 1 1 0
1 2 3 4A

Lecture 13 12

1 1 1
1 2 3

Error – M not created

B

C

CS1112 Lecture 13

Lecture slides 2

Example: minimum value in a matrix

function val = minInMatrix(M)
% val is the smallest value in matrix M

Lecture 13 14

Pattern for traversing a matrix M

[nr, nc] = size(M)
for r= 1:nr

% At row r
for c= 1:nc

% At column c (in row r)

Lecture 13 16

% At column c (in row r)
%
% Do something with M(r,c) …

end
end

Matrix example: Random Web

 N web pages can be represented by an N-by-
N Link Array A.

 A(i,j) is 1 if there is a link on webpage j to
webpage i

 Generate a random link array and display the

Lecture 13 17

 Generate a random link array and display the
connectivity:
 There is no link from a page to itself
 If i≠j then A(i,j) = 1 with probability

 There is more likely to be a link if i is close to j
||1

1
ji

function A = RandomLinks(n)
% A is n-by-n matrix of 1s and 0s
% representing n webpages

A = zeros(n,n);
for i=1:n
for j=1:n

Lecture 13 18

for j 1:n
r = rand(1);
if i~=j && r<= 1/(1 + abs(i-j));

A(i,j) = 1;
end

end
end

A Cost/Inventory Problem

 A company has 3 factories that make 5
different products

 The cost of making a product varies from
factory to factory

Lecture 13 23

y y
 The inventory/capacity varies from factory to

factory

Problems

A customer submits a purchase order that
is to be filled by a single factory.

1. How much would it cost a factory to fill the
order?

Lecture 13 24

order?
2. Does a factory have enough inventory/capacity

to fill the order?
3. Among the factories that can fill the order,

who can do it most cheaply?

CS1112 Lecture 13

Lecture slides 3

Cost Array

C

10 36 22 15

12 35 20 12 66

62

Lecture 13 25

13 37 21 16 59

The value of C(i,j) is what it costs
factory i to make product j.

Inventory (or Capacity) Array

38 5 99 34

82 19 83 12Inv 42

42

Lecture 13 26

51 29 21 56 87

The value of Inv(i,j) is the inventory in
factory i of product j.

Purchase Order

1 0 12 529PO

Lecture 13 27

The value of PO(j) is the number of
product j’s that the customer wants

C

10 36 22 15

12 35 20 12

13 37 21 16

66

62

59

Lecture 13 31

1 0 12 529PO

Cost for
factory i:

s = 0; %Sum of cost
for j=1:5

s = s + C(i,j)*PO(j)
end

function TheBill = iCost(i,C,PO)

% The cost when factory i fills the

% purchase order

nProd = length(PO);

Encapsulate…

Lecture 13 32

nProd = length(PO);

TheBill = 0;

for j=1:nProd

TheBill = TheBill + C(i,j)*PO(j);

end

iBest = 0; minBill = inf;

for i=1:nFact

iBill = iCost(i,C,PO);

if iBill < minBill

Finding the Cheapest

Lecture 13 34

% Found an Improvement

iBest = i; minBill = iBill;

end

end

CS1112 Lecture 13

Lecture slides 4

inf – a special value that can be regarded as
positive infinity

x = 10/0 assigns inf to x
y = 1+x assigns inf to y
z = 1/x assigns 0 to z

Lecture 13 35

/ g
w < inf is always true if w is numeric

Inventory/Capacity Considerations

What if a factory lacks the inventory/capacity to fill
the purchase order?

Lecture 13 36

Such a factory should be excluded from the find-
the-cheapest computation.

Wanted: A True/False Function

iCanDoInv

PO

i

DO

Lecture 13 38

DO is “true” if factory i can fill the order.
DO is “false” if factory i cannot fill the order.

function DO = iCanDo(i,Inv,PO)

% DO is true if factory i can fill

% the purchase order. Otherwise, false

Encapsulate…

Lecture 13 46

nProd = length(PO);

DO = 1;

for j = 1:nProd

DO = DO && (Inv(i,j) >= PO(j));

end

function DO = iCanDo(i,Inv,PO)

% DO is true if factory i can fill

% the purchase order. Otherwise, false

nProd = length(PO);

j = 1;

Encapsulate…

Lecture 13 47

j ;

while j<=nProd && Inv(i,j)>=PO(j)

j = j+1;

end

DO = _______;

iBest = 0; minBill = inf;
for i=1:nFact

if iCanDo(i,Inv,PO)
iBill = iCost(i,C,PO);
if iBill < minBill

Back To Finding the Cheapest

Lecture 13 51

if iBill < minBill
% Found an Improvement

iBest = i; minBill = iBill;
end

end
end

