- Previous Lecture:
- Examples on vectors (I-d arrays)
- Today's Lecture:
- 2-d array-matrix
- Announcements:
- Discussion in classrooms this week, not computer lab
- Project 3 due on Thursday at IIpm
- Prelim 2 on Thurs, 3/I7, 7:30-9pm. Email Randy Hess if you have an exam conflict with another course. rbhess@cs.cornell.edu

Storing and using data in tables

A company has 3 factories that make 5 products with these costs:

What is the best way to fill a given purchase order?

Connections between webpages

0	0	1	0	1	0	0
1	0	0	1	1	1	0
0	1	0	1	1	1	1
1	0	1	1	0	1	0
0	0	1	1	0	1	1
0	0	1	0	1	0	1
0	1	1	0	1	1	0

2-d array: matrix

- An array is a named collection of like data organized into rows and columns
- A 2-d array is a table, called a matrix
- Two indices identify the position of a value in a matrix, e.g.,

$$
\operatorname{mat}(r, c)
$$

refers to component in row r, column c of matrix mat

- Array index starts at I
- Rectangular: all rows have the same \#of columns

Creating a matrix

- Built-in functions: ones, zeros, rand
- E.g., zeros(2,3) gives a 2-by-3 matrix of 0s
- "Build" a matrix using square brackets, [], but the dimension must match up:
- $[x y]$ puts y to the right of x
- [$\mathrm{x} ; \mathrm{y}$] puts y below x
- [403;5 । 9] creates the matrix

\longrightarrow| 4 | 0 | 3 |
| :--- | :--- | :--- |
| 5 | 1 | 9 |

- [4 0 3; ones(1,3$)$] gives
- [4 0 3; ones $(3, \mathrm{I})$] doesn't work

4	0	3
1	1	1

Working with a matrix:
size and individual components

2	-1	.5	0	-3
3	8	6	7	7
5	-3	8.5	9	10
52	81	.5	7	2

[nr, nc]= size(M) \% nr is \#of rows, \% nc is \#of columns
$n r=\operatorname{size}(M, 1)$ \% \# of rows
nc= size(M, 2) \% \# of columns
$M(2,4)=1$;
disp(M(3,1))
$M(1, n c)=4 ;$

\% What will M be?
 M = [ones(1,3); 1:4]

$\begin{array}{llll}1 & 1 & 1 & 0 \\ 1 & 2 & 3 & 4\end{array}$
$\begin{array}{lll}1 & 1 & 1\end{array}$
123

Error - M not created

What will A be?

$A=\left[\begin{array}{ll}1 & 1\end{array}\right]$

$A=\left[A^{\prime}\right.$ ones $\left.(2,1)\right]$
$A=\left[\begin{array}{llllll}1 & 1 & 1 & 1 ; & A & A\end{array}\right]$

A 3-by-4 matrix
B 4-by-3 matrix
C vector of length 12
D Error

Example: minimum value in a matrix

function val $=$ minlnMatrix(M)

$\%$ val is the smallest value in matrix M

minlnMatrix.m

Pattern for traversing a matrix M

$$
[\mathrm{nr}, \mathrm{nc}]=\operatorname{size}(\mathrm{M})
$$

for $r=1: n r$
\% At row r

$$
\text { for } c=1: n c
$$

\% At column c (in row r)
\%
\% Do something with M(r,c) ... end
end

Matrix example: Random Web

- N web pages can be represented by an N -byN Link Array A.
- A(i,j) is I if there is a link on webpage j to webpage i
- Generate a random link array and display the connectivity:
- There is no link from a page to itself - If $i \neq j$ then $A(i, j)=I$ with probability $\frac{1}{1+|i-j|}$
\square There is more likely to be a link if i is close to j
function $A=$ RandomLinks(n)
\% A is n-by-n matrix of 1 s and 0 s
\% representing n webpages

```
A = zeros(n,n);
for i=1:n
    for \(j=1: n\)
        \(r=r a n d(1) ;\)
        if i~=j \&\& r<= 1/(1 + abs(i-j));
        \(A(i, j)=1 ;\)
        end
    end
end
```


Random web
 $\mathrm{N}=20$

01110000010010000000
10001000111000000100 0101000000000000000 00101000000000000000 00010000001100000000 00000000000001010000 01111100010110000000 00000010000100000011 01000000010010001000 00000001101000000001 00000010000011000000 00000010010000000001 00010000110101100000 00000010000000110000 00000101000010010001 00000010001000001010 01000000100001010110 0000000000000011001 0000001000000000000 00000000000000001010

Represent the web pages graphically...

100 Web pages arranged in a circle. Next display the links....

Represent the web pages graphically...

Line black as it leaves page j, red when it arrives at page i

ShowRandomLinks.m

