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Previous Lecture:
Probability and random numbers
1-d array—vector

Today’s Lecture:
More examples on vectors
Simulation

Announcement:
Project 3 posted.  Due 3/10.
Prelim 2 on 3/27.  Please let us know now (email Randy 
Hess, rbhess@cs.cornell.edu) if you have a university-
scheduled conflict. 
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Loop patterns for working with a vector

% Given a vector v

for k = 1:length(v)

% Work with v(k)
% E.g.,  disp(v(k))

end

% Given a vector v
k = 1;
while k <= length(v)

% Work with v(k)
% E.g.,  disp(v(k))

k = k+1;

end
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Example

Write a program fragment that calculates the 
cumulative sums of a given vector v.
The cumulative sums should be stored in a 
vector of the same length as v.

1, 3, 5, 0 v
1, 4, 9, 9 cumulative sums of v
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Simulation

Imitates real system 
Requires judicious use of random numbers
Requires many trials

opportunity to practice working with vectors!

Lecture 12 7

Random numbers

Pseudorandom numbers in programming
Function rand(…) generates random real 
numbers in the interval (0,1).  All numbers in the 
interval (0,1) are equally likely to occur—uniform
probability distribution.
Examples:

rand(1) one random # in (0,1)
6*rand(1) one random # in (0,6)
6*rand(1)+1 one random # in (1,7)
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Uniform probability 
distribution in (0,1)

rand
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Normal distribution with 
zero mean and unit 
standard deviation
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Sanity check:  rand and randn

>> n= 1000000;
>> x= rand(n,1);
>> ave= sum(x)/n
ave =

0.5004

>> y= randn(n,1);
>> ave= sum(y)/n
ave =

0.0018
>> stdDev= std(y)
stdDev =

1.0001
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Simulate twinkling stars

Get 10 user mouse clicks as locations of 10 
stars—our constellation
Simulate twinkling

Loop through all the stars; each has equal likelihood 
of being bright or dark
Repeat many times

Can use DrawStar, DrawRect

% No. of stars and star radius
N=10;  r=.5;  

% Get mouse clicks, store coords in vectors x,y
[x,y] = ginput(N);

% Twinkle!
for k= 1:20 % 20 rounds of twinkling

end
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Twinkle.m
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2-dimensional random walk
N = 11   Hops =   67

Start in the middle tile, 
(0,0).  

For each step, 
randomly choose 
between N,E,S,W and 
then walk one tile.  
Each tile is 1×1.

Walk until you reach 
the boundary.
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function [x, y] = RandomWalk2D(N)
% 2D random walk in 2N-1 by 2N-1 grid.
% Walk randomly from (0,0) to an edge. 
% Vectors x,y represent the path.

function [x, y] = RandomWalk2D(N)

k=0;  xc=0;  yc=0;

while not at an edge
% Choose random dir, update xc,yc

% Record new location in x, y

end
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% Standing at (xc,yc)
% Randomly select a step

r= rand(1);
if r < .25

yc= yc + 1;  % north
elseif r < .5

xc= xc + 1;  % east
elseif r < .75

yc= yc -1;   % south
else

xc= xc -1;   % west
end
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Another representation for the random step

Observe that each update has the form
xc= xc + ∆x
yc= yc + ∆y

no matter which direction is taken.
So let’s get rid of the if statement!
Need to create two “change vectors” deltaX and 
deltaY

deltaX

deltaY
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(x4,y4)

(x1,y1)

(x3,y3)

(x2,y2)

(x5,y5)

Example:  polygon smoothing

Can store the x-y
coordinates in 
vectors x and y

x y
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First operation:  centralize

Move a polygon so that the centroid
of its vertices is at the origin
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function [xNew,yNew] = Centralize(x,y)
% Translate polygon defined by vectors
% x,y such that the centroid is on the
% origin. New polygon defined by vectors
% xNew,yNew.

n = length(x);
xBar = sum(x)/n; 
yBar = sum(y)/n;
xNew = x-xBar; 
yNew = y-yBar;

Vectorized code
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Second operation:  normalize

Shrink (enlarge) the polygon so that
the vertex furthest from the
(0,0) is on the unit circle
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function [xNew,yNew] = Normalize(x,y)
% Resize polygon defined by vectors x,y
% such that distance of the vertex
% furthest from origin is 1

d = max(sqrt(x.^2 + y.^2));
xNew = x/d; 
yNew = y/d;

Applied to a vector, max returns 
the largest value in the vector

Vectorized ops
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Third operation:  smooth

Obtain a new polygon by connecting
the midpoints of the edges
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function [xNew,yNew] = Smooth(x,y)
% Smooth polygon defined by vectors x,y
% by connecting the midpoints of 
% adjacent edges

n = length(x);
xNew = zeros(n,1);
yNew = zeros(n,1);

for i=1:n
Compute the midpt of ith edge.
Store in xNew(i) and yNew(i)

end
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% Given n, x, y
for i=1:n

xNew(i) = (x(i) + x(i+1))/2;
yNew(i) = (y(i) + y(i+1))/2;

end

Polygon Smoothing

Does above fragment compute the new n-gon?
A:  Yes

B:  No


