- Previous Lecture:
- Probability and random numbers
- I-d array-vector
- Today's Lecture:
- More examples on vectors
- Simulation
- Announcement:
- Project 3 posted. Due 3/I0.
- Prelim 2 on $3 / 27$. Please let us know now (email Randy Hess, rbhess@cs.cornell.edu) if you have a universityscheduled conflict.

Loop patterns for working with a vector

```% Given a vector v for k = 1:length(v) % Work with v(k) % E.g., disp(v(k)) end```	```% Given a vector v k = 1; while k <= length(v) % Work with v(k) % E.g., disp(v(k)) k = k+1;``` end
	12



- Write a program fragment that calculates the cumulative sums of a given vector $\mathbf{V}$.
- The cumulative sums should be stored in a vector of the same length as $\mathbf{V}$.
$\mathrm{I}, 3,5,0 \quad \mathrm{v}$
$\mathrm{I}, 4,9,9$ cumulative sums of $\mathbf{v}$


Random numbers

- Pseudorandom numbers in programming
- Function rand (...) generates random real numbers in the interval $(0, I)$. All numbers in the interval $(0, I)$ are equally likely to occur-uniform probability distribution.
- Examples:

rand (1)	one random \# in $(0, I)$
$6^{*}$ rand (1)	one random \# in $(0,6)$
$6 * \operatorname{rand}(1)+1$ one random \# in $(1,7)$	



Simulate twinkling stars

- Get IO user mouse clicks as locations of IO stars-our constellation
- Simulate twinkling
- Loop through all the stars; each has equal likelihood of being bright or dark
- Repeat many times
- Can use DrawStar, DrawRect


## Twinkle.m

Twinkle

Twinkle.m	

Sanity check: rand and randn

```
>> n= 1000000;
```

$\gg x=r a n d(n, 1)$;
$\gg$ ave= sum(x)/n
ave =
0.5004
>> $y=r \operatorname{randn}(n, 1)$;
$\gg$ ave $=\operatorname{sum}(y) / n$
ave =
0.0018
>> stdDev= std(y)
stdDev =
1.0001
\% No. of stars and star radius
$\mathrm{N}=10$; $\mathrm{r}=.5$;
\% Get mouse clicks, store coords in vectors $x, y$
[ $\mathrm{x}, \mathrm{y}$ ] = ginput( N );
\% Twinkle!
for $\mathbf{k}=1: 20 \% 20$ rounds of twinkling
end

2-dimensional random walk
Start in the middle tile, $(0,0)$.

For each step, randomly choose between $\mathrm{N}, \mathrm{E}, \mathrm{S}, \mathrm{W}$ and then walk one tile.
Each tile is $|\times|$.
Walk until you reach the boundary.


```
function [x, y] = RandomWalk2D(N)
% 2D random walk in 2N-1 by 2N-1 grid.
% Walk randomly from (0,0) to an edge.
% Vectors x,y represent the path.
```

```
% Standing at (xc,yc)
% Randomly select a step
 r= rand(1);
 if r < . 25
 yc= yc + 1; % north
 elseif r < . 5
 xc= xc + 1; % east
 elseif r < . }7
 yc= yc -1; % south
 else
 xc= xc -1; % west
 end
```

Example: polygon smoothing

```
function [x, y] = RandomWalk2D(N)
k=0; xc=0; yc=0;
while not at an edge
 % Choose random dir, update xc,yc
 % Record new location in x, y
end
```

Another representation for the random step

- Observe that each update has the form

$$
\begin{aligned}
& x c=x c+\Delta x \\
& y c=y c+\Delta y
\end{aligned}
$$

no matter which direction is taken.

- So let's get rid of the if statement!
- Need to create two "change vectors" deltaX and deltaY
deltay $\square \square$


```
function [xNew,yNew] = Centralize(x,y)
% Translate polygon defined by vectors
% x,y such that the centroid is on the
% origin. New polygon defined by vectors
% xNew,yNew.
n = length(x);
xBar = sum(x)/n;
yBar = sum(y)/n;
xNew = x-xBar;
yNew = y-yBar;
 Vectorized code
```

```
function [xNew,yNew] = Normalize(x,y)
% Resize polygon defined by vectors x,y
% such that distance of the vertex
% furthest from origin is 1
 d = max(sqrt(x.^2 + y.^2));
 xNew = x/d;
 yNew = y/d;
```

    Applied to a vector, max returns
    the largest value in the vector
    ```
function [xNew,yNew] = Smooth(x,y)
% Smooth polygon defined by vectors x,y
% by connecting the midpoints of
% adjacent edges
n = length(x);
xNew = zeros(n,1);
yNew = zeros(n,1);
for i=1:n
 Compute the midpt of ith edge.
 Store in xNew(i) and yNew(i)
end
```

Second operation: normalize
Shrink (enlarge) the polygon so that
the vertex furthest from the
$(0,0)$ is on the unit circle


Third operation: smooth


Polygon Smoothing
\% Given $n, x$, $y$
for $i=1: n$
$x N e w(i)=(x(i)+x(i+1)) / 2 ;$
$y N e w(i)=(y(i)+y(i+1)) / 2 ;$
end

Does above fragment compute the new $n$-gon?

| A: Yes |
| :---: |
| B: No |

