
CS1112 Lecture 12

Lecture slides 1

Previous Lecture:
Probability and random numbers
1-d array—vector

Today’s Lecture:
More examples on vectors
Simulation

Announcement:
Project 3 posted.  Due 3/10.
Prelim 2 on 3/27.  Please let us know now (email Randy 
Hess, rbhess@cs.cornell.edu) if you have a university-
scheduled conflict. 

Lecture 12 2

Loop patterns for working with a vector

% Given a vector v

for k = 1:length(v)

% Work with v(k)
% E.g.,  disp(v(k))

end

% Given a vector v
k = 1;
while k <= length(v)

% Work with v(k)
% E.g.,  disp(v(k))

k = k+1;

end

Lecture 12 3

Example

Write a program fragment that calculates the 
cumulative sums of a given vector v.
The cumulative sums should be stored in a 
vector of the same length as v.

1, 3, 5, 0 v
1, 4, 9, 9 cumulative sums of v

Lecture 12 4

Lecture 12 6

Simulation

Imitates real system 
Requires judicious use of random numbers
Requires many trials

opportunity to practice working with vectors!

Lecture 12 7

Random numbers

Pseudorandom numbers in programming
Function rand(…) generates random real 
numbers in the interval (0,1).  All numbers in the 
interval (0,1) are equally likely to occur—uniform
probability distribution.
Examples:

rand(1) one random # in (0,1)
6*rand(1) one random # in (0,6)
6*rand(1)+1 one random # in (1,7)



CS1112 Lecture 12

Lecture slides 2

Lecture 12 8

Uniform probability 
distribution in (0,1)

rand

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2000

4000

6000

8000

10000

12000
100000 random numbers using rand -- uniform probability distribution

−3 −2 −1 0 1 2 3
0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000
Distribution of randn(1000000,1)

Normal distribution with 
zero mean and unit 
standard deviation

randn

Lecture 12 9

Sanity check:  rand and randn

>> n= 1000000;
>> x= rand(n,1);
>> ave= sum(x)/n
ave =

0.5004

>> y= randn(n,1);
>> ave= sum(y)/n
ave =

0.0018
>> stdDev= std(y)
stdDev =

1.0001

Lecture 12 12

Simulate twinkling stars

Get 10 user mouse clicks as locations of 10 
stars—our constellation
Simulate twinkling

Loop through all the stars; each has equal likelihood 
of being bright or dark
Repeat many times

Can use DrawStar, DrawRect

% No. of stars and star radius
N=10;  r=.5;  

% Get mouse clicks, store coords in vectors x,y
[x,y] = ginput(N);

% Twinkle!
for k= 1:20 % 20 rounds of twinkling

end

Lecture 12 15

Twinkle.m

Lecture 12 16

2-dimensional random walk
N = 11   Hops =   67

Start in the middle tile, 
(0,0).  

For each step, 
randomly choose 
between N,E,S,W and 
then walk one tile.  
Each tile is 1×1.

Walk until you reach 
the boundary.



CS1112 Lecture 12

Lecture slides 3

Lecture 12 17

function [x, y] = RandomWalk2D(N)
% 2D random walk in 2N-1 by 2N-1 grid.
% Walk randomly from (0,0) to an edge. 
% Vectors x,y represent the path.

function [x, y] = RandomWalk2D(N)

k=0;  xc=0;  yc=0;

while not at an edge
% Choose random dir, update xc,yc

% Record new location in x, y

end

Lecture 12 21

% Standing at (xc,yc)
% Randomly select a step

r= rand(1);
if r < .25

yc= yc + 1;  % north
elseif r < .5

xc= xc + 1;  % east
elseif r < .75

yc= yc -1;   % south
else

xc= xc -1;   % west
end

Lecture 12 23

Another representation for the random step

Observe that each update has the form
xc= xc + ∆x
yc= yc + ∆y

no matter which direction is taken.
So let’s get rid of the if statement!
Need to create two “change vectors” deltaX and 
deltaY

deltaX

deltaY

Lecture 12 26

(x4,y4)

(x1,y1)

(x3,y3)

(x2,y2)

(x5,y5)

Example:  polygon smoothing

Can store the x-y
coordinates in 
vectors x and y

x y

Lecture 12 27

−3 −2 −1 0 1 2 3 4 5 6 7
−2

−1

0

1

2

3

4

5

6

After

Before

First operation:  centralize

Move a polygon so that the centroid
of its vertices is at the origin



CS1112 Lecture 12

Lecture slides 4

Lecture 12 28

function [xNew,yNew] = Centralize(x,y)
% Translate polygon defined by vectors
% x,y such that the centroid is on the
% origin. New polygon defined by vectors
% xNew,yNew.

n = length(x);
xBar = sum(x)/n; 
yBar = sum(y)/n;
xNew = x-xBar; 
yNew = y-yBar;

Vectorized code

Lecture 12 30

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Before

After

Second operation:  normalize

Shrink (enlarge) the polygon so that
the vertex furthest from the
(0,0) is on the unit circle

Lecture 12 31

function [xNew,yNew] = Normalize(x,y)
% Resize polygon defined by vectors x,y
% such that distance of the vertex
% furthest from origin is 1

d = max(sqrt(x.^2 + y.^2));
xNew = x/d; 
yNew = y/d;

Applied to a vector, max returns 
the largest value in the vector

Vectorized ops

Lecture 12 32

−1.5 −1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Third operation:  smooth

Obtain a new polygon by connecting
the midpoints of the edges

Lecture 12 33

function [xNew,yNew] = Smooth(x,y)
% Smooth polygon defined by vectors x,y
% by connecting the midpoints of 
% adjacent edges

n = length(x);
xNew = zeros(n,1);
yNew = zeros(n,1);

for i=1:n
Compute the midpt of ith edge.
Store in xNew(i) and yNew(i)

end

Lecture 12 37

% Given n, x, y
for i=1:n

xNew(i) = (x(i) + x(i+1))/2;
yNew(i) = (y(i) + y(i+1))/2;

end

Polygon Smoothing

Does above fragment compute the new n-gon?
A:  Yes

B:  No


