- Previous Lecture:
- Probability and random numbers
- I-d array-vector
- Today's Lecture:
- More examples on vectors
- Simulation
- Announcement:
- Project 3 posted. Due $3 / 10$.
- Prelim 2 on 3/I7. Please let us know now (email Randy Hess, rbhess@cs.cornell.edu) if you have a universityscheduled conflict.

Loop patterns for working with a vector

\% Given a vector v for $k=1$ length (v)	\% Given a vector v k = 1;
\% Work with $\mathrm{v}(\mathrm{k})$ \% E.g., disp(v(k))	$\begin{aligned} & \text { \% Work with v(k) } \\ & \text { \% E.g., } \quad \text { disp(v(k)) } \end{aligned}$
end	k = k+1;
	end

Example

- Write a program fragment that calculates the cumulative sums of a given vector \mathbf{V}.
- The cumulative sums should be stored in a vector of the same length as \mathbf{V}.
$\mathrm{I}, 3,5,0 \quad \mathrm{v}$
$\mathrm{I}, 4,9,9$ cumulative sums of \mathbf{v}

end

$$
\begin{aligned}
& \text { V } \\
& \operatorname{csum} \frac{1|1| 1}{1-\operatorname{csum}(k)} \operatorname{csum}(k-1)+v(k) \\
& \operatorname{csum}(3)=v(1)+v(2)+v(3) \\
& \operatorname{csum}(4)=\underbrace{v(1)+v(2)+v(3)}_{\operatorname{csum}(3)}+v(4) \\
& \operatorname{csum}(1)=V(1) \text {; } \\
& \text { for } k=2 \text { : length }(v) \\
& \operatorname{csum}(k)=\operatorname{csum}(k-1)+v(k) ;
\end{aligned}
$$

Simulation

- Imitates real system
- Requires judicious use of random numbers
- Requires many trials
- \rightarrow opportunity to practice working with vectors!

Random numbers

- Pseudorandom numbers in programming
- Function rand (...) generates random real numbers in the interval $(0, \mathrm{I})$. All numbers in the interval $(0, I)$ are equally likely to occur-uniform probability distribution.
- Examples:

> rand $(1) \quad$ one random \# in $(0,1)$
> $6^{*} r$ rand $(1) \quad$ one random \# in $(0,6)$
> 6^{*} rand $(1)+1$ one random \# in $(1,7)$

Uniform probability distribution in ($0, \mathrm{I}$) rand

Normal distribution with zero mean and unit standard deviation randn

Sanity check: rand and randn
>> $\mathrm{n}=1000000$;
$\gg x=r a n d(n, 1)$;
\gg ave $=\operatorname{sum}(x) / n$
ave =
0.5004

Simulate twinkling stars

- Get IO user mouse clicks as locations of IO stars-our constellation
- Simulate twinkling
- Loop through all the stars; each has equal likelihood of being bright or dark
- Repeat many times
- Can use DrawStar, DrawRect
\% No. of stars and star radius
$\mathrm{N}=10 ; r=.5 ;$
\% Get mouse clicks, store coords in vectors x, y
[x, y] = ginput(N);
\% Twinkle!
for k= 1:20 \% 20 rounds of twinkling
end
\% No. of stars and star radius
$\mathrm{N}=10$; $\mathrm{r}=.5$;
\% Get mouse clicks, store coords In vectors x, y [x, y] = ginput(N);
\% Twinkle!
for k= 1:20 \% 20 rounds of twinkling
end

Twinkle.m

2-dimensional random walk

$$
N=11 \text { Hops }=67
$$

Start in the middle tile, $(0,0)$.

For each step, randomly choose between N,E,S,W and then walk one tile.
Each tile is $|\times|$.
Walk until you reach
 the boundary.
function [x, y] = RandomWalk2D(N) \% 2D random walk in 2N-1 by 2N-1 grid. \% Walk randomly from $(0,0)$ to an edge. \% Vectors x, y represent the path.
function [x, y] = RandomWalk2D(N)

$$
\mathrm{k}=0 \text {; } \quad \mathrm{xc}=0 ; \quad \mathrm{yc}=0 \text {; }
$$

while not at an edge
\% Choose random dir, update xc,yc
\% Record new location in x, y
end
function $[\mathrm{x}, \mathrm{y}]=$ RandomWalk2D(N)
$\mathrm{k}=0$; $\mathrm{xc}=0$; $\mathrm{yc}=0$;
while abs(xc)<N \&\& abs(yc)<N
\% Choose random dir, update xc,yc
\% Record new location in x, y
end
function $[\mathrm{x}, \mathrm{y}]=$ RandomWalk2D(N)
$\mathrm{k}=0$; $\mathrm{xc}=0$; $\mathrm{yc}=0$;
while abs(xc)<N \&\& abs(yc)<N
\% Choose random dir, update xc,yc
\% Record new location in x, y $k=k+1$; $x(k)=x c$; $y(k)=y c$; end
\% Standing at (xc,yc)
\% Randomly select a step
$r=$ rand(1);
if $r<.25$
yc= yc + 1; \% north
elseif r < . 5
xc= xc + 1; \% east
elseif r < . 75
yc= yc -1; \% south
else
xc= xc -1; \% west
end

RandomWalk2D.m

Another representation for the random step

- Observe that each update has the form

$$
\begin{aligned}
& x c=x c+\Delta x \\
& y c=y c+\Delta y
\end{aligned}
$$

no matter which direction is taken.

- So let's get rid of the if statement!
- Need to create two "change vectors" deltaX and deltaY

RandomWalk2D_v2.m

Example: polygon smoothing

Example: polygon smoothing

Can store the $x-y$ coordinates in vectors x and y

First operation: centralize

function [xNew,yNew] = Centralize(x,y) \% Translate polygon defined by vectors $\% \mathrm{x}, \mathrm{y}$ such that the centroid is on the \% origin. New polygon defined by vectors \% xNew,yNew.
n = length(x);
xBar $=$ sum(x)/n;
yBar = sum(y)/n;
xNew = x-xBar;
yNew = y-yBar;
Vectorized code
function [xNew,yNew] = Centralize(x,y) \% Translate polygon defined by vectors $\% \mathrm{x}, \mathrm{y}$ such that the centroid is on the \% origin. New polygon defined by vectors \% xNew,yNew.
n = length(x);
xBar $=$ sum(x)/n;
yBar = sum(y)/n;
xNew = x-xBar;
yNew $=y$-yBar; $\}$
Vectorized code

$$
\begin{aligned}
& \text { xNew }=z \operatorname{eros}(n, 1) ; \\
& y \operatorname{New}=z \cos (n, 1) ; \\
& \text { for } k=1: n \\
& x \operatorname{New}(k)=x(k)-x \text { Bar; } \\
& y \operatorname{New}(k)=y(k)-y \text { Bar; } \\
& \text { end }
\end{aligned}
$$

Second operation: normalize

Shrink (enlarge) the polygon so that the vertex furthest from the $(0,0)$ is on the unit circle

function [xNew,yNew] = Normalize(x,y) \% Resize polygon defined by vectors x, y \% such that distance of the vertex \% furthest from origin is 1
$\begin{array}{ll}\mathbf{d}=\max (\operatorname{sqrt}(x . \wedge 2+y . \wedge 2)) ; \\ \text { xNew }=x / d ; \\ \text { yNew }=y / d ; & \text { Vectorized ops }\end{array}$

Applied to a vector, max returns the largest value in the vector

Third operation: smooth

function [xNew,yNew] = Smooth(x,y) \% Smooth polygon defined by vectors x, y \% by connecting the midpoints of \% adjacent edges
n = length(x);
xNew $=$ zeros($n, 1$);
yNew $=$ zeros($n, 1$);
for $\mathrm{i}=1: \mathrm{n}$
Compute the midpt of ith edge. Store in xNew(i) and yNew(i) end

```
xNew(1) = (x(1)+x(2))/2
yNew(1) = (y(1)+y(2))/2
```



```
xNew(2) = (x(2)+x(3))/2
yNew(2) = (y(2)+y(3))/2
```



```
xNew(3) = (x(3)+x(4))/2
yNew(3) = (y(3)+y(4))/2
```



```
xNew(4) = (x(4)+x(5))/2
yNew(4) = (y(4)+y(5))/2
```



```
xNew(5) = (x(5)+x(1))/2
yNew(5) = (y(5)+y(1))/2
```


Smooth

for $i=1: n$ $x N e w(i)=(x(i)+x(i+1)) / 2 ;$ $y \operatorname{New}(i)=(y(i)+y(i+1)) / 2 ;$ end

Will result in a subscript out of bounds error when i is n.

Smooth
for $i=1: n$
if i<n $x N e w(i)=(x(i)+x(i+1)) / 2 ;$ $y N e w(i)=(y(i)+y(i+1)) / 2 ;$ else $x N e w(n)=(x(n)+x(1)) / 2 ;$ $y N e w(n)=(y(n)+y(1)) / 2 ;$ end
end

Smooth
for $i=1: n-1$

$$
\begin{aligned}
& x \operatorname{New}(i)=(x(i)+x(i+1)) / 2 ; \\
& y \operatorname{New}(i)=(y(i)+y(i+1)) / 2 ;
\end{aligned}
$$

end
$x \operatorname{New}(n)=(x(n)+x(1)) / 2 ;$
$y \operatorname{New}(n)=(y(n)+y(1)) / 2 ;$

Show a simulation of polygon smoothing

Create a polygon with randomly located vertices.

Repeat:

Centralize
Normalize

Smooth

ShowSmooth.m

