
Previous Lecture:
Probability and random numbers
1-d array—vector

Today’s Lecture:
More examples on vectors
Simulation

Announcement:
Project 3 posted. Due 3/10.
Prelim 2 on 3/17. Please let us know now (email Randy
Hess, rbhess@cs.cornell.edu) if you have a university-
scheduled conflict.

Lecture 12 2

Loop patterns for working with a vector

% Given a vector v

for k = 1:length(v)

% Work with v(k)
% E.g., disp(v(k))

end

% Given a vector v
k = 1;
while k <= length(v)

% Work with v(k)
% E.g., disp(v(k))

k = k+1;

end

Lecture 12 3

Example

Write a program fragment that calculates the
cumulative sums of a given vector v.
The cumulative sums should be stored in a
vector of the same length as v.

1, 3, 5, 0 v
1, 4, 9, 9 cumulative sums of v

Lecture 12 4

Lecture 12 5

Lecture 12 6

Simulation

Imitates real system
Requires judicious use of random numbers
Requires many trials

opportunity to practice working with vectors!

Lecture 12 7

Random numbers

Pseudorandom numbers in programming
Function rand(…) generates random real
numbers in the interval (0,1). All numbers in the
interval (0,1) are equally likely to occur—uniform
probability distribution.
Examples:

rand(1) one random # in (0,1)
6*rand(1) one random # in (0,6)
6*rand(1)+1 one random # in (1,7)

Lecture 12 8

Uniform probability
distribution in (0,1)

rand

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2000

4000

6000

8000

10000

12000
100000 random numbers using rand -- uniform probability distribution

−3 −2 −1 0 1 2 3
0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000
Distribution of randn(1000000,1)

Normal distribution with
zero mean and unit
standard deviation

randn

Lecture 12 9

Sanity check: rand and randn

>> n= 1000000;
>> x= rand(n,1);
>> ave= sum(x)/n
ave =

0.5004

>> y= randn(n,1);
>> ave= sum(y)/n
ave =

0.0018
>> stdDev= std(y)
stdDev =

1.0001

Lecture 12 12

Simulate twinkling stars

Get 10 user mouse clicks as locations of 10
stars—our constellation
Simulate twinkling

Loop through all the stars; each has equal likelihood
of being bright or dark
Repeat many times

Can use DrawStar, DrawRect

% No. of stars and star radius
N=10; r=.5;

% Get mouse clicks, store coords in vectors x,y
[x,y] = ginput(N);

% Twinkle!
for k= 1:20 % 20 rounds of twinkling

end

% No. of stars and star radius
N=10; r=.5;

% Get mouse clicks, store coords In vectors x,y
[x,y] = ginput(N);

% Twinkle!
for k= 1:20 % 20 rounds of twinkling

end

Loop through all stars.
Each has 50% chance of being

“lit”—draw in yellow.
Otherwise draw in black.

Lecture 12 15

Twinkle.m

Lecture 12 16

2-dimensional random walk
N = 11 Hops = 67

Start in the middle tile,
(0,0).

For each step,
randomly choose
between N,E,S,W and
then walk one tile.
Each tile is 1×1.

Walk until you reach
the boundary.

Lecture 12 17

function [x, y] = RandomWalk2D(N)
% 2D random walk in 2N-1 by 2N-1 grid.
% Walk randomly from (0,0) to an edge.
% Vectors x,y represent the path.

function [x, y] = RandomWalk2D(N)

k=0; xc=0; yc=0;

while not at an edge
% Choose random dir, update xc,yc

% Record new location in x, y

end

function [x, y] = RandomWalk2D(N)

k=0; xc=0; yc=0;

while abs(xc)<N && abs(yc)<N
% Choose random dir, update xc,yc

% Record new location in x, y

end

function [x, y] = RandomWalk2D(N)

k=0; xc=0; yc=0;

while abs(xc)<N && abs(yc)<N
% Choose random dir, update xc,yc

% Record new location in x, y
k=k+1; x(k)=xc; y(k)=yc;

end

Lecture 12 21

% Standing at (xc,yc)
% Randomly select a step

r= rand(1);
if r < .25

yc= yc + 1; % north
elseif r < .5

xc= xc + 1; % east
elseif r < .75

yc= yc -1; % south
else

xc= xc -1; % west
end

Lecture 12 22

RandomWalk2D.m

Lecture 12 23

Another representation for the random step

Observe that each update has the form
xc= xc + ∆x
yc= yc + ∆y

no matter which direction is taken.
So let’s get rid of the if statement!
Need to create two “change vectors” deltaX and
deltaY

deltaX

deltaY

Lecture 12 24

RandomWalk2D_v2.m

Lecture 12 25

(x4,y4)

(x1,y1)

(x3,y3)

(x2,y2)

(x5,y5)

Example: polygon smoothing

Lecture 12 26

(x4,y4)

(x1,y1)

(x3,y3)

(x2,y2)

(x5,y5)

Example: polygon smoothing

Can store the x-y
coordinates in
vectors x and y

x y

Lecture 12 27

−3 −2 −1 0 1 2 3 4 5 6 7
−2

−1

0

1

2

3

4

5

6

After

Before

First operation: centralize

Move a polygon so that the centroid
of its vertices is at the origin

Lecture 12 28

function [xNew,yNew] = Centralize(x,y)
% Translate polygon defined by vectors
% x,y such that the centroid is on the
% origin. New polygon defined by vectors
% xNew,yNew.

n = length(x);
xBar = sum(x)/n;
yBar = sum(y)/n;
xNew = x-xBar;
yNew = y-yBar;

Vectorized code

Lecture 12 29

function [xNew,yNew] = Centralize(x,y)
% Translate polygon defined by vectors
% x,y such that the centroid is on the
% origin. New polygon defined by vectors
% xNew,yNew.

n = length(x);
xBar = sum(x)/n;
yBar = sum(y)/n;
xNew = x-xBar;
yNew = y-yBar;

Vectorized code

Lecture 12 30

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Before

After

Second operation: normalize

Shrink (enlarge) the polygon so that
the vertex furthest from the
(0,0) is on the unit circle

Lecture 12 31

function [xNew,yNew] = Normalize(x,y)
% Resize polygon defined by vectors x,y
% such that distance of the vertex
% furthest from origin is 1

d = max(sqrt(x.^2 + y.^2));
xNew = x/d;
yNew = y/d;

Applied to a vector, max returns
the largest value in the vector

Vectorized ops

Lecture 12 32

−1.5 −1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Third operation: smooth

Obtain a new polygon by connecting
the midpoints of the edges

Lecture 12 33

function [xNew,yNew] = Smooth(x,y)
% Smooth polygon defined by vectors x,y
% by connecting the midpoints of
% adjacent edges

n = length(x);
xNew = zeros(n,1);
yNew = zeros(n,1);

for i=1:n
Compute the midpt of ith edge.
Store in xNew(i) and yNew(i)

end

Lecture 12 34

xNew(1) = (x(1)+x(2))/2
yNew(1) = (y(1)+y(2))/2

(x4,y4)

(x1,y1)

(x3,y3)

(x2,y2)

(x5,y5)

Lecture 12 35

xNew(2) = (x(2)+x(3))/2
yNew(2) = (y(2)+y(3))/2

(x4,y4)

(x1,y1)

(x3,y3)

(x2,y2)

(x5,y5)

Lecture 12 36

xNew(3) = (x(3)+x(4))/2
yNew(3) = (y(3)+y(4))/2

(x4,y4)

(x1,y1)

(x3,y3)

(x2,y2)

(x5,y5)

Lecture 12 38

xNew(4) = (x(4)+x(5))/2
yNew(4) = (y(4)+y(5))/2

(x4,y4)

(x1,y1)

(x3,y3)

(x2,y2)

(x5,y5)

Lecture 12 39

xNew(5) = (x(5)+x(1))/2
yNew(5) = (y(5)+y(1))/2

(x4,y4)

(x1,y1)

(x3,y3)

(x2,y2)

(x5,y5)

Lecture 12 40

for i=1:n
xNew(i) = (x(i) + x(i+1))/2;
yNew(i) = (y(i) + y(i+1))/2;

end

Will result in a subscript
out of bounds error when i is n.

Smooth

Lecture 12 41

for i=1:n
if i<n

xNew(i) = (x(i) + x(i+1))/2;
yNew(i) = (y(i) + y(i+1))/2;

else
xNew(n) = (x(n) + x(1))/2;
yNew(n) = (y(n) + y(1))/2;

end
end

Smooth

Lecture 12 42

for i=1:n-1
xNew(i) = (x(i) + x(i+1))/2;
yNew(i) = (y(i) + y(i+1))/2;

end
xNew(n) = (x(n) + x(1))/2;
yNew(n) = (y(n) + y(1))/2;

Smooth

Lecture 12 43

Show a simulation of polygon smoothing

Create a polygon with randomly located vertices.

Repeat:
Centralize
Normalize
Smooth

Lecture 12 44

ShowSmooth.m

