
CS1112 Lecture 10

Lecture slides 1

Lecture 10 2

Previous lecture
Finite/inexact arithmetic
Plotting continuous functions using vectors and
vectorized code
User-defined functions

Function header

Today’s lecture
User-defined functions

Input parameters and return variables
local memory space
Subfunction

Announcement
Prelim 1 tonight at 7:30pm Statler Auditorium

Lecture 10 3

Draw a bulls eye figure with randomly placed dots

Dots are randomly placed
within concentric rings
User decides how many
rings, how many dots

Lecture 10 7

function [x, y] = polar2xy(r,theta)
% Convert polar coordinates (r,theta) to
% Cartesian coordinates (x,y).
% theta is in degrees.

rads= theta*pi/180; % radian
x= r*cos(rads);
y= r*sin(rads);

A function file

pola
r2xy

.m

r

theta

Think of polar2xy as a factory

x
y

Lecture 10 8

% Put dots btw circles with radii rRing and (rRing-1)
for rRing= 1:c

% Draw d dots
for count= 1:d

% Generate random dot location
theta= _______
r= _______

% Convert from polar to Cartesian
rads= theta*pi/180;
x= r*cos(rads);
y= r*sin(rads);

% Draw the dot

end
end

[x,y] = polar2xy(r,theta);

Lecture 10 12

Function header is the “contract” for how the function will be used (called)

function [x, y] = polar2xy(r, theta)
% Convert polar coordinates (r,theta) to
% Cartesian coordinates (x,y). Theta in degrees.
…

% Convert polar (r1,t1) to Cartesian (x1,y1)
r1= 1; t1= 30;
[x1, y1]= polar2xy(r1, t1);
plot(x1, y1, ‘b*’)
…

You have this function:

Code to call the above function:

Lecture 10 13

Returning a value ≠ printing a value

function [x, y] = polar2xy(r, theta)
% Convert polar coordinates (r,theta) to
% Cartesian coordinates (x,y). Theta in degrees.
…

% Convert polar (r1,t1) to Cartesian (x1,y1)
r1= 1; t1= 30;
[x1, y1]= polar2xy(r1, t1);
plot(x1, y1, ‘b*’)
…

You have this function:

Code to call the above function:

CS1112 Lecture 10

Lecture slides 2

Lecture 10 15

% Given f and n
d= convertLength(f,n);
d= convertLength(f*12+n);
d= convertLength(f+n/12);
x= min(convertLength(f,n), 1);
y= convertLength(pi*(f+n/12)^2);

A: 1 B: 2 C: 3 D: 4

function m = convertLength(ft,in)
% Convert length from feet (ft) and inches (in)
% to meters (m).

. . .

Given this function:

How many proper calls to convertLength are shown below?

E: 5 or 0

Lecture 10 16

General form of a user-defined function

function [out1, out2, …]= functionName (in1, in2, …)
% 1-line comment to describe the function
% Additional description of function

Executable code that at some point assigns
values to output parameters out1, out2, …

in1, in2, … are defined when the function begins execution.
Variables in1, in2, … are called function parameters and they hold
the function arguments used when the function is invoked (called).
out1, out2, … are not defined until the executable code in the
function assigns values to them.

Lecture 10 18

Comments in functions

Block of comments after the function header is
printed whenever a user types

help <functionName>
at the Command Window
1st line of this comment block is searched whenever a
user types

lookfor <someWord>
at the Command Window
Every function should have a comment block after the
function header that says what the function does
concisely

Lecture 10 21

Why write user-defined function?

Easy code re-use—great for “common” tasks
A function can be tested independently easily
Keep a driver program clean by keeping detail
code in functions—separate, non-interacting
files
Facilitate top-down design
Software management

Lecture 10 22

c= input('How many concentric rings? ');
d= input('How many dots? ');

% Put dots btwn circles with radii rRing and (rRing-1)
for rRing= 1:c

% Draw d dots
for count= 1:d

% Generate random dot location (polar coord.)
theta=_______
r=_______

% Convert from polar to Cartesian
x=_______
y=_______

% Use plot to draw dot
end

end

Each task becomes a
function that can be
implemented and
tested independently

Lecture 10 23

Facilitates top-down design

1. Focus on how to draw the figure given just a
specification of what the function DrawStar
does.

2. Figure out how to implement DrawStar.

CS1112 Lecture 10

Lecture slides 3

Lecture 10 24

To specify a function…

… you describe how to use it, e.g.,

function DrawStar(xc,yc,r,c)
% Adds a 5-pointed star to the
% figure window. Star has radius r,
% center(xc,yc) and color c where c
% is one of 'r', 'g', 'y', etc.

Given the specification, the user of the
function doesn’t need to know the detail
of the function—they can just use it!

Lecture 10 25

To implement a function…

… you write the code so that the function “lives up to” the
specification. E.g.,

r2 = r/(2*(1+sin(pi/10)));
tau = pi/5;
for k=1:11

theta = (2*k-1)*pi/10;
if 2*floor(k/2)~=k

x(k) = xc + r*cos(theta);
y(k) = yc + r*sin(theta);

else
x(k) = xc + r2*cos(theta);
y(k) = yc + r2*sin(theta);

end
end
fill(x,y,c)

Don’t worry—you’ll learn

more about graphics

functions soon.

Lecture 10 30

Software Management

Today:

I write a function
EPerimeter(a,b)

that computes the perimeter of the ellipse

1
22

=⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

b
y

a
x

Lecture 10 31

Software Management

During this year :

You write software that makes extensive use of

EPerimeter(a,b)

Imagine hundreds of programs each with several
lines that reference EPerimeter

Lecture 10 32

Software Management

Next year:

I discover a more efficient way to approximate
ellipse perimeters. I change the implementation of

EPerimeter(a,b)

You do not have to change your software at all.

Lecture 10 34

Script vs. Function

A script is executed line-by-
line just as if you are typing it
into the Command Window

The value of a variable in a
script is stored in the Command
Window Workspace

A function has its own private
(local) function workspace
that does not interact with
the workspace of other
functions or the Command
Window workspace

Variables are not shared
between workspaces even if
they have the same name

CS1112 Lecture 10

Lecture slides 4

Lecture 10 36

What will be printed?

% Script file
p= -3;
q= absolute(p);
disp(p)

function q = absolute(p)
% q is the absolute value of p
if (p<0)

p= -p;
end
q= p;

Lecture 10 49

REVIEW!!!

% Script file
p= -3;
q= absolute(p);
disp(p)

function q = absolute(p)
% q is the absolute value of p
if (p<0)

p= -p;
end
q= p;

Command Window Workspace

p -3

Function absolute’s Workspace

p -3

A value is passed to
the function
parameter when the
function is called.

The two variables,
both called p, live in
different memory
space and do not
interfere.

Lecture 10 50

Command Window Workspace

p -3

REVIEW!!!!

% Script file
p= -3;
q= absolute(p);
disp(p)

function q = absolute(p)
% q is the absolute value of p
if (p<0)

p= -p;
end
q= p;

Function absolute’s Workspace

p 3

q 3

Command Window Workspace

p -3

q 3

When a function
reaches the end
of execution (and
returns the
output
argument), the
function space—
local space—is
deleted.

Lecture 10 51

x = 1;
x = f(x+1);
y = x+1;
disp(y)

function y = f(x)
x = x+1;
y = x+1;

What is the output?

A: 1 B: 2 C: 3 D: 4 E: 5

Lecture 10 53

Execute the statement y= foo(x)

Matlab looks for a function called foo (m-file called
foo.m)
Argument (value of x) is copied into function foo’s local
parameter

called “pass-by-value,” one of several argument passing
schemes used by programming languages

Function code executes within its own workspace
At the end, the function’s output argument (value) is
sent from the function to the place that calls the
function. E.g., the value is assigned to y.
Function’s workspace is deleted

If foo is called again, it starts with a new, empty workspace

Lecture 10 56

Subfunction

There can be more than one function in an M-file
top function is the main function and has the name of
the file
remaining functions are subfunctions, accessible only by
the functions in the same m-file
Each (sub)function in the file begins with a function
header
Keyword end is not necessary at the end of a
(sub)function

