1 Where to put your long-burning light bulb?

In this exercise, you need to think about the problem and come up with a plan to solve it. Think about the approach that you will take and the functions you may need to write in answering the question.

Refer to the dot-matrix examples from Lecture 21 in which a digit is displayed on a $7 \times 5 \mathrm{grid}$ of lightbulbs. Suppose you have one extra-long-life light bulb that can be used in the 7×5 board. In which position of the 7×5 board would you put this special long-life light bulb? Assume that function digitToShow is given and the display board displays the digit returned by the function:

```
function n = digitToShow()
% n is the next digit to be displayed on the 7-by-5 display board. n is an integer, 0<=n<=9.
```

Assume this function is given and use it in your solution - don't assume that all digits are equally likely to occur.
Further assume that a bulb (i, j) that is in a lit part of the board simply stays on-instead of first turning off and then back on-when the display changes to another digit that requires bulb (i, j) to be on. Answer the question for these two separate cases:

1. The longer that a bulb is on, the more it degrades.
2. Switching a bulb on (and off) frequently causes it to degrade. (Assume that continuous burning doesn't degrade the bulb.)

Assume the availability of function TheDigits, shown in lecture, that returns a $10-$ by- 1 cell array D such that $\mathrm{D}\{\mathrm{k}\}$ is the matrix encoding digit k . Part of the function is shown below:

```
function D = TheDigits()
% D is a 10-by-1 cell array.
% D{k} is a 7-by-5 matrix that encodes the digit k. (D{10} encodes 0.)
D = cell(10,1);
D{1} = [0 0 1 0 0;...
    0 1 1 0 0;...
    0 0 1 0 0;...
    0 0 1 0 0;...
    0 0 1 0 0;...
    0 0 1 0 0;...
    0 1 1 1 0];
D{2} = [lllllll
    100 0 1;...
    0 0 0 0 1;...
    0 0 0 1 0;...
    0 0 1 0 0;...
    0 1 0 0 0;...
    111 1 1];
\vdots
D{10} = [lllllll}
    1000 1;...
    1000 1;...
    100 0 1;...
    100 0 1;...
    1000 1;...
    0 1 1 1 0];
```


2 Challenge question

Refer to the question above. What if you have five extra-long-life light bulbs? Determine in which positions you should place these special light bulbs in the two cases described above.

