## Is XC in the interval [L,R]?

$$
q(x)=x^{2}+b x+c \quad \circ x_{c}=-b / 2
$$



So what is the requirement?

# \% Determine whether xc is in \% [L,R] <br> xc = -b/2; 

if

## disp('Yes')

else

## disp( ${ }^{\prime}{ }^{\prime}{ }^{\prime}$ ')

end

So what is the requirement?

# \% Determine whether xc is in \% [L,R] <br> xc = -b/2; 

if L<=xc \&\& xc<=R
disp('Yes')
else
disp( ${ }^{\prime N o}$ ')
end

The value of a boolean expression is either true or false.

$$
(L<=x c) \& \& \quad(x c<=R)
$$

This (compound) boolean expression is made up of two (simple) boolean expressions. Each has a value that is either true or false.

Connect boolean expressions by boolean operators:


## Logical operators

\&\& logical and: Are both conditions true?
E.g., we ask "is $L \leq x_{c}$ and $x_{c} \leq R$ ?" In our code: $\mathrm{L}<=\mathrm{xc}$ \&\& $\mathrm{xc}<=\mathbf{R}$

## Logical operators

\&\& logical and: Are both conditions true?

|| logical or: Is at least one condition true?
E.g., we can ask if $x_{c}$ is outside of $[L, R]$,
i.e., "is $x_{c} \leq L$ or $R \leq x_{c}$ ?" In code: $\mathrm{xc}<=\mathrm{L}| | \mathrm{R}<=\mathrm{xc}$

## Logical operators

\&\& logical and: Are both conditions true?

|| logical or: Is at least one condition true?
E.g., we can ask if $x_{C}$ is outside of $[L, R]$,


In code: $\mathrm{xc}<=\mathrm{L}$ || $\mathrm{R}<=\mathrm{xc}$
~ logical not: Negation
E.g., we can ask if $X_{c}$ is not outside $[L, R]$. In code: $\sim(x c<=L| | R<=x c)$

## Logical operators

\&\& logical and: Are both conditions true?
E.g., we ask "is $L \leq x_{c}$ and $x_{c} \leq R$ ?"

In our code: $\mathrm{L}<=\mathrm{xc}$ \&\& $\mathrm{xc}<=\mathrm{R}$
|| logical or: Is at least one condition true?
E.g., we can ask if $X_{c}$ is outside of $[L, R]$,
i.e., "is $x_{c} \leq L$ or $R \leq x_{c}$ ?"

In code: $x c<=L$ || $R<=x c$
~ logical not: Negation
E.g., we can ask if $x_{C}$ is not outside $[L, R]$.

In code: $\sim(x c<=L \| R<=x c)$

