- Previous Lecture:
 - Developing algorithms
 - Nested loops
- Today's Lecture:
 - Review
 - Finite vs. Infinite
 - Introduction to vectors, vectorized code
- Announcements:
 - Discussion this week in UP B7 lab
 - Prelim I: 9/23(R) 7:30-9pm. Location Statler Aud.
 - Review sessions: 9/21(T) 5-6:30pm, 2/22(W) 5-6:30pm. Locations TBA. They're optional—attend one if you wish.

cture 8

Rational approximation of π

- $\pi = 3.141592653589793...$
- Can be closely approximated by fractions,

e.g., $\pi \approx 22/7$

- Rational number: a quotient of two integers
- Approximate π as p/q where p and q are positive integers ≤M
- Start with a straight forward solution:
 - Get M from user
 - Calculate quotient p/q for all combinations of p and q
 - Pick best quotient → smallest error

Lecture 8

```
% Rational approximation of pi

M = input('Enter M: ');
% Best q, p, and error so far
qBest=1; pBest=1;
err_pq = abs(pBest+qBest - pi);
% Check all possible denominators
for q = 1:M
% Find best numerator for this q

for p = 1:M % Check all possible p

end

end
myPi = pBest/qBest;
testers
```


The savvy programmer...

- Learns useful programming patterns and use them where appropriate
- Seeks inspiration by working through test data "by hand"
 - Asks, "What am I doing?" at each step
 - Sets up a variable for each piece of information maintained when working the problem by hand
- Decomposes the problem into manageable subtasks
 - Refines the solution iteratively, solving simpler subproblems first
- Remembers to check the problem's boundary conditions
- Validates the solution (program) by trying it on test data

Lecture 8

Lecture slides 1

Xeno's Paradox

- A wall is two feet away
- Take steps that repeatedly halve the remaining distance
- You never reach the wall because the distance traveled after n steps =

$$1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n} = 2 - \frac{1}{2^n}$$

ecture 8 21

% Xeno Disks

DrawRect(0,-1,2,2,'k')
% Draw 20 Xeno disks

for k= 1:20

End of Review Material for Prelim 1

Lecture slides 2


```
Color is a 3-vector, sometimes called the RGB values

• Any color is a mix of red, green, and blue
• Example:

colr= [0.4 0.6 0]

• Each component is a real value in [0,1]
• [0 0 0] is black
• [1 1 1] is white
```

```
Example: 3 disks fading from yellow to black

r= 1; % radius of disk
yellow= [1 1 0];
black = [0 0 0];

% Left disk yellow, at x=1
DrawDisk(1,0,r,yellow)
% Right disk black, at x=5
DrawDisk(5,0,r,black)

% Middle disk with average color, at x=3

colr= 0.5*yellow + 0.5*black;
DrawDisk(3,0,r,colr)
```

```
Linear interpolation
            g(x)
                            g(10.5) = \frac{1}{2}g(11) + \frac{1}{2}g(10)
            110
10
            118
                            g(10.25) = 1/4 \cdot g(11) + 3/4 \cdot g(10)
10.25
                            g(10.50) = 2/4 \cdot g(11) + 2/4 \cdot g(10)

g(10.75) = 3/4 \cdot g(11) + 1/4 \cdot g(10)
10.50
             ?
10.75
11
            126
12
            134
```


Lecture slides 3