- Previous Lecture (and lab):
 - Variables & assignment
 - Built-in functions
 - Input & output
 - Good programming style (meaningful variable names; use comments)
- Today's Lecture:
 - Branching (conditional statements)

Announcements:

- Project I (PI) due Thurs, 9/9, at IIpm
- Pay attention to Academic Integrity
- TAs: See any TA for help, not just your section instructor
- Consulting
 - Matlab consultants at ACCEL Green Rm (Engrg Library 2nd fl. computing facility)
 - 4-10pm Sunday to Thursday (except 9/12, 9/13)
- You need to attend the section in which you are enrolled
- Just added CS1112? Tell your discussion TA to add you in CS1112 CMS (and tell CS1110 to drop your from their CMS).
- Register your clicker with Cornell CIT (see course website)

Quick review

- Variable
 - A named memory space to store a value
- Assignment operator: =
 - Let x be a variable that has a value. To give variable y the same value as x, which statement below should you write?

$$x = y$$
 or $y = x$

- Script (program)
 - A sequence of statements saved in an m-file
- ; (semi-colon)
 - Suppresses printing of the result of assignment statement

September 2

Lecture 3

- So far, all the statements in our scripts are executed in order
- We do not have a way to specify that some statements should be executed only under some condition
- We need a new language construct...

September 2

Lecture 3

Consider the quadratic function

$$q(x) = x^2 + bx + c$$

on the interval [L, R]:

- •Is the function strictly increasing in [L, R]?
- •Which is smaller, q(L) or q(R)?
- •What is the minimum value of q(x) in [L, R]?

September 2

Lecture 3

- What are the critical points?
 - End points: x = L, x = R
 - $\{ x \mid q'(x) = 0 \}$

September 2

Lecture 3

10

Problem I Write a code fragment that prints "yes" if q(x) increases across the interval and "no" if it does not.

```
% Quadratic q(x) = x^2 + bx + c
b = input('Enter b: ');
c = input('Enter c: ');
L = input('Enter L: ');
R = input('Enter R: ');

% Determine whether q increases
% across [L,R]
xc = -b/2;
```


Problem 2

Write a code fragment that prints

"qleft is smaller"

if q(L) is smaller than q(R).

If q(R) is smaller print

"qright is smaller."

Algorithm v2 Calculate x_c If distance $\overline{x_c}$ L is same as distance $\overline{x_c}$ Print "qleft and qright are equal" Otherwise, if $\overline{x_c}$ L is shorter than $\overline{x_c}$ Print "qleft is smaller" Otherwise print "qright is smaller"

```
% Which is smaller, q(L) or q(R)?

xc= -b/2; % x at center
if (abs(xc-L) == abs(xc-R))
   disp('qleft and qright are equal')
elseif (abs(xc-L) < abs(xc-R))
   disp('qleft is smaller')
else
   disp('qright is smaller')
end</pre>
```

```
Consider the quadratic function q(x)=x^2+bx+c on the interval [L\,,R]: What if you only want to know if q(L) is close to q(R)?
```

```
% given x, y

if x>y

disp('alpha')

else

disp('beta')

end

A: yes

y given x, y

if x>y

disp('alpha')

end

if y>=x

disp('beta')

end

B: no
```

```
Simple if construct

if boolean expression

statements to execute if expression is true

else

statements to execute if expression is false
end
```

```
Even simpler if construct

if boolean expression

statements to execute if expression is true

end

supplement 2 Lecture 3 36
```

```
The if construct

if boolean expression!
statements to execute if expression! is true

elseif boolean expression2
statements to execute if expression! is false
but expression2 is true
:
else
statements to execute if all previous conditions
are false
end

can have any number of elseif branches
but at most one else branch
but at most one else branch
```

Things to know about the if construct

| ______branch of statements is executed
| There can be _____elseif clauses
| There can be _____else clause
| The else clause _____in the construct
| The else clause _____in the construct
| Construct | Const

Modified Problem 3

Write a code fragment that prints "yes" if xc is in the interval and "no" if it is not.


```
So what is the requirement?

% Determine whether xc is in
% [L,R]
xc = -b/2;

if ______

disp('Yes')
else
 disp('No')
end

september 2 Lecture 3 48
```

The value of a boolean expression is either <u>true</u> or <u>false</u>.

(L<=xc) && (xc<=R)

This (compound) boolean expression is made up of two (simple) boolean expressions. Each has a value that is either <u>true</u> or <u>false</u>.

Connect boolean expressions by boolean operators:

and or not

Logical operators

&& logical and: Are both conditions true?

E.g., we ask "is $L \le x_c$ and $x_c \le R$?"

In our code: L <= xc && xc <= R|| logical or: Is at least one condition true?

E.g., we can ask if x_c is outside of [L,R],

i.e., "is $x_c \le L$ or $R \le x_c$?"

In code: xc <= L || R <= xc* logical not: Negation

E.g., we can ask if x_c is not outside [L,R].

In code: (xc <= L || R <= xc)

Consider the quadratic function $q(x) = x^2 + bx + c$ on the interval [L, R]:

•Is the function strictly increasing in [L, R]?

•Which is smaller, q(L) or q(R)?

•What is the minimum value of q(x) in [L, R]?

Start with pseudocode

If xc is between L and R

Min is at xc

Otherwise

Min is at one of the endpoints

We have decomposed the problem into three pieces! Can choose to work with any piece next: the if-else construct/condition, min at xc, or min at an endpoint

Set up structure first: if-else, condition

if L<=xc && xc<=R

Then min is at xc

else

Min is at one of the endpoints

end

Now refine our solution-in-progress. I'll choose to work on the if-branch next

```
Refinement: filled in detail for task "min at xc"

if L<=xc && xc<=R
% min is at xc
qMin= xc^2 + b*xc + c;

else

Min is at one of the endpoints
end

Continue with refining the solution... else-branch next
```

```
Final solution (given b,c,L,R,xc)
if L<=xc && xc<=R
    % min is at xc
   qMin = xc^2 + b*xc + c;
else
    \mbox{\ensuremath{\upsigma}} min is at one of the endpoints
    if xc < L
        qMin = L^2 + b*L + c;
    else
                                 An if-statement can
        qMin= R^2 + b*R + c;
                                  appear within a branch-
                                   appear within a pranch of just like any other kind of
    end
end
                                    statement
```



```
Notice that there are 3 alternatives→can use elseif!
if L<=xc && xc<=R
                           if L<=xc && xc<=R
  % min is at xc
                             % min is at xc
  qMin= xc^2+b*xc+c;
                              qMin= xc^2+b*xc+c;
else
                           elseif xc < L
  % min at one endpt
                             qMin= L^2+b*L+c;
  if xc < L
    qMin= L^2+b*L+c;
                             qMin= R^2+b*R+c;
  else
                           end
    qMin= R^2+b*R+c;
  end
end
```

