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Announcements

P6 due today at 11pm
Final exam:  12/10 (Fri) 9am at Barton West (indoor field) 
Please fill out course evaluation on-line (hosted by College of 
Engineering, see “Exercise15”)
Please fill out evaluation on iRobot Create Simulator on CMS. It is 
worth 1 project point (to make up for any lost project point)!
Regular office/consulting hours end today.  “Study Break” hours 
start next week.
Review Session: 12/8 Wednesday 1-2:30pm, UP B17
Pick up any paper from consultants (prelim, regrade results) 
during consulting hours.  Everything will be shredded afterwards.
Read announcements on course website! 
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Previous Lecture:
Efficiency
Recursion

Today’s Lecture:
Recursion review
A model to quantify importance: Google “Page 
Rank”



Lecture 27 5

Divide-and-conquer methods also show up in 
geometric situations

Chop a region up into 
triangles with smaller 
triangles in “areas of 
interest”

Recursive mesh generation
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Mesh Generation

Step one in simulating flow around an airfoil is to generate 
a mesh and (say) estimate velocity at each mesh point.

An area of 
interest
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Mesh Generation in 3D
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Why is mesh generation a divide-&-conquer process?

Let’s draw this graphic
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Start with a triangle
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A “level-1” partition of the triangle

(obtained by connecting the midpoints of the sides of the original triangle)

Now do the same partitioning (connecting midpts) on each corner (white) 
triangle to obtain the “level-2” partitioning
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The “level-2” partition of the triangle
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The “level-3” partition of the triangle
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The “level-4” partition of the triangle
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The “level-4” partition of the triangle
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The basic operation at each level

if the triangle is small
Don’t subdivide and just color it yellow.

else
Subdivide: 
Connect the side midpoints;
color the interior triangle magenta;
apply same process to each outer triangle.

end
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Draw a level-4 partition of the triangle with these vertices
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At the start…
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Recur:  apply the same process on the lower left triangle



Lecture 27 19

Recur again
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… and again

The next lower left corner triangle (white) is small—no more 
subdivision and just color it yellow.
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Now lower left corner triangle of the “level-4” partition is 
done.  Continue with another corner triangle
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… and continue
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Now the lower left corner triangle of the “level-3”
partition is done.  Continue with another corner 
triangle…
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We’re “climbing our way out” of the deepest level of 
partitioning
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Eventually climb all the way out to get the final result
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The basic operation at each level

if the triangle is small
Don’t subdivide and just color it yellow.

else
Subdivide: 
Connect the side midpoints;
color the interior triangle magenta;
Apply same process to each outer triangle.

end
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function MeshTriangle(x,y,L)
% x,y are 3-vectors that define the vertices of a triangle.
% Draw level-L partitioning.  Assume hold is on.

if L==0
% Recursion limit reached; no more subdivision required.
fill(x,y,'y')  % Color this triangle yellow

else
% Need to subdivide:  determine the side midpoints; connect
% midpts to get “interior triangle”; color it magenta.

% Apply the process to the three "corner" triangles...

end
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function MeshTriangle(x,y,L)
% x,y are 3-vectors that define the vertices of a triangle.
% Draw level-L partitioning.  Assume hold is on.

if L==0
% Recursion limit reached; no more subdivision required.
fill(x,y,'y')  % Color this triangle yellow

else
% Need to subdivide:  determine the side midpoints; connect
% midpts to get “interior triangle”; color it magenta.
a = [(x(1)+x(2))/2 (x(2)+x(3))/2 (x(3)+x(1))/2];
b = [(y(1)+y(2))/2 (y(2)+y(3))/2 (y(3)+y(1))/2];
fill(a,b,'m')

% Apply the process to the three "corner" triangles...

end
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function MeshTriangle(x,y,L)
% x,y are 3-vectors that define the vertices of a triangle.
% Draw level-L partitioning.  Assume hold is on.

if L==0
% Recursion limit reached; no more subdivision required.
fill(x,y,'y')  % Color this triangle yellow

else
% Need to subdivide:  determine the side midpoints; connect
% midpts to get “interior triangle”; color it magenta.
a = [(x(1)+x(2))/2 (x(2)+x(3))/2 (x(3)+x(1))/2];
b = [(y(1)+y(2))/2 (y(2)+y(3))/2 (y(3)+y(1))/2];
fill(a,b,'m')

% Apply the process to the three "corner" triangles...
MeshTriangle([x(1) a(1) a(3)],[y(1) b(1) b(3)],L-1)
MeshTriangle([x(2) a(2) a(1)],[y(2) b(2) b(1)],L-1)
MeshTriangle([x(3) a(3) a(2)],[y(3) b(3) b(2)],L-1)  

end
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Quantifying Importance

How do you rank web pages for importance given 
that you know the link structure of the Web, i.e., 
the in-links and out-links for each web page?

A related question:
How does a deleted or added link on a webpage 
affect its “rank”?
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Background

Index all the pages on the Web from 1 to n.  (n is 
around ten billion.)

The PageRank algorithm orders these pages from 
“most important” to “least important.”

It does this by analyzing links, not content.
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Key ideas

There is a random web surfer—a special random 
walk
The surfer has some random “surfing”
behavior—a transition probability matrix
The transition probability matrix comes from the 
link structure of the web—a connectivity matrix
Applying the transition probability matrix 
Page Rank
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A 3-node network with specified transition probabilities 
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A special random walk

Suppose there are a 1000 people on each node.

At the sound of a whistle they hop to another 
node in accordance with the “outbound”
probabilities.

For now we assume we know these 
probabilities.  Later we will see how 
to get them.
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At Node 1
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At Node 1
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At Node 2
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At Node 3
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State Vector:
describes the state at each node at a specific time

1000
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1000
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After 100 iterations

T=99         T=100

Node 1    1142.85      1142.85

Node 2    1357.14      1357.14

Node 3     500.00       500.00

Appears to reach a steady state

Call this the stationary vector
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Transition Probability Matrix
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P(i,j) is the probability of hopping 
to node i from node j
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Formula for the new state vector

W(1) = P(1,1)*v(1) + P(1,2)*v(2) + P(1,3)*v(3)
W(2) = P(2,1)*v(1) + P(2,2)*v(2) + P(2,3)*v(3)
W(3) = P(3,1)*v(1) + P(3,2)*v(2) + P(3,3)*v(3)

P
.7
.2

.3

.6

.1 .5
.3
.2

.1

v is the old state vector
w is the updated state vector

P(i,j) is 
probability of 
hopping to node
i from node j
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The general case

function w = Update(P,v)
% Update state vector v based on transition
% probability matrix P to give state vector w
n = length(v); 
w = zeros(n,1);
for i=1:n

for j=1:n
w(i) = w(i) + P(i,j)*v(j);

end
end
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To obtain the stationary vector…

function [w,err]= StatVec(P,v,tol,kMax)
% Iterate to get stationary vector w
w = Update(P,v);
err = max(abs(w-v));
k = 1;
while k<kMax && err>tol

v = w;
w = Update(P,v);
err = max(abs(w-v));
k = k+1;

end



Lecture 27 55

Stationary vector indicates importance:   2 1 3
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Repeat:
You are on a webpage.
There are m outlinks, 

so choose one at 
random.

Click on the link.

Repeat:
You are on an island.
According to the 

transitional 
probabilities,

go to another island.

A random walk on the web Random island hopping

Use the link structure of the 
web to figure out the 
transitional probabilities! (Assume no dead ends for 

now;  we deal with them later.) 
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0   0   0   0   0   0   1   1
1   0   0   1   0   0   0   0
1   0   1   0   0   1   0   1
0   0   0   0   1   0   0   0
1   0   1   0   0   0   0   1
0   0   1   0   0   0   0   1
0   0   1   0   0   0   0   0
0   1   0   1   0   0   0   0

Connectivity 
Matrix

G

G(i,j) is 1 if there is a link on 
page j to page i.

(I.e., you can get to i from j.)
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0   0   0   0   0   0   1   1
1   0   0   1   0   0   0   0
1   0   1   0   0   1   0   1
0   0   0   0   1   0   0   0
1   0   1   0   0   0   0   1
0   0   1   0   0   0   0   1
0   0   1   0   0   0   0   0
0   1   0   1   0   0   0   0

Connectivity 
Matrix

0   0   0   0   0   0   ?   ? 
?   0   0   ?   0   0   0   0
?   0   ?   0   0   ?   0   ? 
0   0   0   0   ?   0   0   0
?   0   ?   0   0   0   0   ? 
0   0   ?   0   0   0   0   ? 
0   0   ?   0   0   0   0   0
0   ?   0   ?   0   0   0   0

Transition 
Probability 
Matrix 
derived from 
Connectivity 
Matrix

G

P
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0   0   0   0   0   0   1   1
1   0   0   1   0   0   0   0
1   0   1   0   0   1   0   1
0   0   0   0   1   0   0   0
1   0   1   0   0   0   0   1
0   0   1   0   0   0   0   1
0   0   1   0   0   0   0   0
0   1   0   1   0   0   0   0

Connectivity 
Matrix

0   0   0   0   0   0   ?   ? 
?   0   0   ?   0   0   0   0
?   0   ?   0   0   ?   0   ? 
0   0   0   0   ?   0   0   0
?   0   ?   0   0   0   0   ? 
0   0   ?   0   0   0   0   ? 
0   0   ?   0   0   0   0   0
0   ?   0   ?   0   0   0   0

G

P

Transition Probability

A.  0

B.  1/8

C.  1/3

D.  1

E.  rand(1)
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0   0   0   0   0   0   1   1
1   0   0   1   0   0   0   0
1   0   1   0   0   1   0   1
0   0   0   0   1   0   0   0
1   0   1   0   0   0   0   1
0   0   1   0   0   0   0   1
0   0   1   0   0   0   0   0
0   1   0   1   0   0   0   0

Connectivity 
Matrix

0   0   0   0   0   0   1  .25
.33  0   0  .50  0   0   0   0
.33  0  .25  0   0   1   0  .25
0   0   0   0   1   0   0   0
.33  0  .25  0   0   0   0  .25
0   0  .25  0   0   0   0  .25
0   0  .25  0   0   0   0   0
0   1   0  .50  0   0   0   0

Transition 
Probability 
Matrix 
derived from 
Connectivity 
Matrix

G

P
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Connectivity (G) Transition Probability (P)

[n,n] = size(G);
P = zeros(n,n);
for j=1:n

P(:,j) = G(:,j)/sum(G(:,j));
end
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To obtain the stationary vector…

function [w,err]= StatVec(P,v,tol,kMax)
% Iterate to get stationary vector w
w = Update(P,v);
err = max(abs(w-v));
k = 1;
while k<kMax && err>tol

v = w;
w = Update(P,v);
err = max(abs(w-v));
k = k+1;

end
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Stationary vector represents how “popular” the pages are 
PageRank

0.5723
0.8206
0.7876
0.2609
0.2064
0.8911
0.2429
0.4100

0.8911
0.8206
0.7876
0.5723
0.4100
0.2609
0.2429
0.2064

6
2
3
1
8
4
7
5

4
2
3
6
8
1
7
5

sorted pRstatVec idx
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0.5723
0.8206
0.7876
0.2609
0.2064
0.8911
0.2429
0.4100

-0.8911
-0.8206
-0.7876
-0.5723
-0.4100
-0.2609
-0.2429
-0.2064

6
2
3
1
8
4
7
5

4
2
3
6
8
1
7
5

sorted pRstatVec idx

[sorted, idx] = sort(-statVec);
for k= 1:length(statVec)

j = idx(k);  % index of kth largest
pR(j) = k;

end
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The random walk idea gets the transitional probabilities 
from connectivity.  So how to deal with dead ends?

Repeat:
You are on a webpage.
There are m outlinks.
Choose one at random.
Click on the link.

What if there are no outlinks?
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The random walk idea gets transitional probabilities from 
connectivity.  Can modify the random walk to deal with dead ends.

Repeat:
You are on a webpage.
If there are no outlinks

Pick a random page and  go there.
else

Flip an unfair coin.
if heads

Click on a random outlink and go there.
else

Pick a random page and go there.
end

end                                                   

In practice, an unfair coin 

with prob .85 heads works 

well.

This results in a different 
transitional probability matrix.
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Quantifying Importance

How do you rank web pages for importance given 
that you know the link structure of the Web, i.e., 
the in-links and out-links for each web page?

A related question:
How does a deleted or added link on a webpage 
affect its “rank”?
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What we learned…

Develop/implement algorithms for problems
Develop programming skills

Design, implement, document, test, and debug

Programming “tool bag”
Control flow (if-else; loops)
Functions for reducing redundancy
Data structures
Graphics
File handling
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What we learned… (cont’d)

Applications and concepts
Image and sound
Sorting and searching—you should know the 
algorithms covered
Divide-and-conquer strategies
Approximation and error
Simulation
Computational effort and efficiency
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Final Exam

Mon 12/10, 9-11:30am, Barton West
Covers entire course, but emphasizes material 
after Prelim 3
Closed-book exam, no calculators
Bring student ID card

Check for announcements on webpage:
Study break office/consulting hours
Review questions
List of potentially useful functions
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Final Exam

Mon 12/10, 9-11:30am, Barton West
Covers entire course, but emphasizes material 
after Prelim 3
Closed-book exam, no calculators
Bring student ID card

Check for announcements on webpage:
Study break office/consulting hours
Review questions
List of potentially useful functions

Best wishes
and 

good luck with all your exams!


