
Lecture 27 2

Announcements

P6 due today at 11pm
Final exam: 12/10 (Fri) 9am at Barton West (indoor field)
Please fill out course evaluation on-line (hosted by College of
Engineering, see “Exercise15”)
Please fill out evaluation on iRobot Create Simulator on CMS. It is
worth 1 project point (to make up for any lost project point)!
Regular office/consulting hours end today. “Study Break” hours
start next week.
Review Session: 12/8 Wednesday 1-2:30pm, UP B17
Pick up any paper from consultants (prelim, regrade results)
during consulting hours. Everything will be shredded afterwards.
Read announcements on course website!

Lecture 27 4

Previous Lecture:
Efficiency
Recursion

Today’s Lecture:
Recursion review
A model to quantify importance: Google “Page
Rank”

Lecture 27 5

Divide-and-conquer methods also show up in
geometric situations

Chop a region up into
triangles with smaller
triangles in “areas of
interest”

Recursive mesh generation

Lecture 27 6

Mesh Generation

Step one in simulating flow around an airfoil is to generate
a mesh and (say) estimate velocity at each mesh point.

An area of
interest

Lecture 27 7

Mesh Generation in 3D

Lecture 27 8

Why is mesh generation a divide-&-conquer process?

Let’s draw this graphic

Lecture 27 9

Start with a triangle

Lecture 27 10

A “level-1” partition of the triangle

(obtained by connecting the midpoints of the sides of the original triangle)

Now do the same partitioning (connecting midpts) on each corner (white)
triangle to obtain the “level-2” partitioning

Lecture 27 11

The “level-2” partition of the triangle

Lecture 27 12

The “level-3” partition of the triangle

Lecture 27 13

The “level-4” partition of the triangle

Lecture 27 14

The “level-4” partition of the triangle

Lecture 27 15

The basic operation at each level

if the triangle is small
Don’t subdivide and just color it yellow.

else
Subdivide:
Connect the side midpoints;
color the interior triangle magenta;
apply same process to each outer triangle.

end

Lecture 27 16

Draw a level-4 partition of the triangle with these vertices

Lecture 27 17

At the start…

Lecture 27 18

Recur: apply the same process on the lower left triangle

Lecture 27 19

Recur again

Lecture 27 20

… and again

The next lower left corner triangle (white) is small—no more
subdivision and just color it yellow.

Lecture 27 21

Now lower left corner triangle of the “level-4” partition is
done. Continue with another corner triangle

Lecture 27 22

… and continue

Lecture 27 23

Now the lower left corner triangle of the “level-3”
partition is done. Continue with another corner
triangle…

Lecture 27 24

Lecture 27 25

We’re “climbing our way out” of the deepest level of
partitioning

Lecture 27 26

Lecture 27 27

Lecture 27 28

Lecture 27 29

Lecture 27 30

Lecture 27 31

Lecture 27 32

Lecture 27 33

Eventually climb all the way out to get the final result

Lecture 27 34

The basic operation at each level

if the triangle is small
Don’t subdivide and just color it yellow.

else
Subdivide:
Connect the side midpoints;
color the interior triangle magenta;
Apply same process to each outer triangle.

end

Lecture 27 35

function MeshTriangle(x,y,L)
% x,y are 3-vectors that define the vertices of a triangle.
% Draw level-L partitioning. Assume hold is on.

if L==0
% Recursion limit reached; no more subdivision required.
fill(x,y,'y') % Color this triangle yellow

else
% Need to subdivide: determine the side midpoints; connect
% midpts to get “interior triangle”; color it magenta.

% Apply the process to the three "corner" triangles...

end

Lecture 27 36

function MeshTriangle(x,y,L)
% x,y are 3-vectors that define the vertices of a triangle.
% Draw level-L partitioning. Assume hold is on.

if L==0
% Recursion limit reached; no more subdivision required.
fill(x,y,'y') % Color this triangle yellow

else
% Need to subdivide: determine the side midpoints; connect
% midpts to get “interior triangle”; color it magenta.
a = [(x(1)+x(2))/2 (x(2)+x(3))/2 (x(3)+x(1))/2];
b = [(y(1)+y(2))/2 (y(2)+y(3))/2 (y(3)+y(1))/2];
fill(a,b,'m')

% Apply the process to the three "corner" triangles...

end

Lecture 27 37

function MeshTriangle(x,y,L)
% x,y are 3-vectors that define the vertices of a triangle.
% Draw level-L partitioning. Assume hold is on.

if L==0
% Recursion limit reached; no more subdivision required.
fill(x,y,'y') % Color this triangle yellow

else
% Need to subdivide: determine the side midpoints; connect
% midpts to get “interior triangle”; color it magenta.
a = [(x(1)+x(2))/2 (x(2)+x(3))/2 (x(3)+x(1))/2];
b = [(y(1)+y(2))/2 (y(2)+y(3))/2 (y(3)+y(1))/2];
fill(a,b,'m')

% Apply the process to the three "corner" triangles...
MeshTriangle([x(1) a(1) a(3)],[y(1) b(1) b(3)],L-1)
MeshTriangle([x(2) a(2) a(1)],[y(2) b(2) b(1)],L-1)
MeshTriangle([x(3) a(3) a(2)],[y(3) b(3) b(2)],L-1)

end

Lecture 27 39

Quantifying Importance

How do you rank web pages for importance given
that you know the link structure of the Web, i.e.,
the in-links and out-links for each web page?

A related question:
How does a deleted or added link on a webpage
affect its “rank”?

Lecture 27 40

Background

Index all the pages on the Web from 1 to n. (n is
around ten billion.)

The PageRank algorithm orders these pages from
“most important” to “least important.”

It does this by analyzing links, not content.

Lecture 27 41

Key ideas

There is a random web surfer—a special random
walk
The surfer has some random “surfing”
behavior—a transition probability matrix
The transition probability matrix comes from the
link structure of the web—a connectivity matrix
Applying the transition probability matrix
Page Rank

Lecture 27 42

A 3-node network with specified transition probabilities

1

2

3

.1

.2

.3

.3

.1
.5

.7

.6

.2

A node
Transition
probabilities

Lecture 27 43

A special random walk

Suppose there are a 1000 people on each node.

At the sound of a whistle they hop to another
node in accordance with the “outbound”
probabilities.

For now we assume we know these
probabilities. Later we will see how
to get them.

Lecture 27 44

At Node 1

1

2

3

.1

.2

.3

.3

0.1
.5

0.7

.6

0.2

Lecture 27 45

At Node 1

1

2

3

.1

.2

.3

.3

100
.5

700

.6

200

Lecture 27 46

At Node 2

1

2

3

100

.2

.3

300

100
.5

700

600

200

Lecture 27 47

At Node 3

1

2

3

100

200

300

300

100

700

600

200

500

Lecture 27 48

State Vector:
describes the state at each node at a specific time

1000

1000

1000

1000

1300

700

1120

1300

580

T=0 T=1 T=2

Lecture 27 49

After 100 iterations

T=99 T=100

Node 1 1142.85 1142.85

Node 2 1357.14 1357.14

Node 3 500.00 500.00

Appears to reach a steady state

Call this the stationary vector

Lecture 27 50

Transition Probability Matrix

.7

.2
.3
.6

.1 .5
.3
.2

.1

P

P(i,j) is the probability of hopping
to node i from node j

Lecture 27 52

Formula for the new state vector

W(1) = P(1,1)*v(1) + P(1,2)*v(2) + P(1,3)*v(3)
W(2) = P(2,1)*v(1) + P(2,2)*v(2) + P(2,3)*v(3)
W(3) = P(3,1)*v(1) + P(3,2)*v(2) + P(3,3)*v(3)

P
.7
.2

.3

.6

.1 .5
.3
.2

.1

v is the old state vector
w is the updated state vector

P(i,j) is
probability of
hopping to node
i from node j

Lecture 27 53

The general case

function w = Update(P,v)
% Update state vector v based on transition
% probability matrix P to give state vector w
n = length(v);
w = zeros(n,1);
for i=1:n

for j=1:n
w(i) = w(i) + P(i,j)*v(j);

end
end

Lecture 27 54

To obtain the stationary vector…

function [w,err]= StatVec(P,v,tol,kMax)
% Iterate to get stationary vector w
w = Update(P,v);
err = max(abs(w-v));
k = 1;
while k<kMax && err>tol

v = w;
w = Update(P,v);
err = max(abs(w-v));
k = k+1;

end

Lecture 27 55

Stationary vector indicates importance: 2 1 3

1

2

3

.1

.2

.3

.3

.1
.5

.7

.6

.2

1357

1143
500

Lecture 27 56

Repeat:
You are on a webpage.
There are m outlinks,

so choose one at
random.

Click on the link.

Repeat:
You are on an island.
According to the

transitional
probabilities,

go to another island.

A random walk on the web Random island hopping

Use the link structure of the
web to figure out the
transitional probabilities! (Assume no dead ends for

now; we deal with them later.)

Lecture 27 57

0 0 0 0 0 0 1 1
1 0 0 1 0 0 0 0
1 0 1 0 0 1 0 1
0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 1
0 0 1 0 0 0 0 1
0 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0

Connectivity
Matrix

G

G(i,j) is 1 if there is a link on
page j to page i.

(I.e., you can get to i from j.)

Lecture 27 58

0 0 0 0 0 0 1 1
1 0 0 1 0 0 0 0
1 0 1 0 0 1 0 1
0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 1
0 0 1 0 0 0 0 1
0 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0

Connectivity
Matrix

0 0 0 0 0 0 ? ?
? 0 0 ? 0 0 0 0
? 0 ? 0 0 ? 0 ?
0 0 0 0 ? 0 0 0
? 0 ? 0 0 0 0 ?
0 0 ? 0 0 0 0 ?
0 0 ? 0 0 0 0 0
0 ? 0 ? 0 0 0 0

Transition
Probability
Matrix
derived from
Connectivity
Matrix

G

P

Lecture 27 59

0 0 0 0 0 0 1 1
1 0 0 1 0 0 0 0
1 0 1 0 0 1 0 1
0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 1
0 0 1 0 0 0 0 1
0 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0

Connectivity
Matrix

0 0 0 0 0 0 ? ?
? 0 0 ? 0 0 0 0
? 0 ? 0 0 ? 0 ?
0 0 0 0 ? 0 0 0
? 0 ? 0 0 0 0 ?
0 0 ? 0 0 0 0 ?
0 0 ? 0 0 0 0 0
0 ? 0 ? 0 0 0 0

G

P

Transition Probability

A. 0

B. 1/8

C. 1/3

D. 1

E. rand(1)

Lecture 27 60

0 0 0 0 0 0 1 1
1 0 0 1 0 0 0 0
1 0 1 0 0 1 0 1
0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 1
0 0 1 0 0 0 0 1
0 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0

Connectivity
Matrix

0 0 0 0 0 0 1 .25
.33 0 0 .50 0 0 0 0
.33 0 .25 0 0 1 0 .25
0 0 0 0 1 0 0 0
.33 0 .25 0 0 0 0 .25
0 0 .25 0 0 0 0 .25
0 0 .25 0 0 0 0 0
0 1 0 .50 0 0 0 0

Transition
Probability
Matrix
derived from
Connectivity
Matrix

G

P

Lecture 27 61

Connectivity (G) Transition Probability (P)

[n,n] = size(G);
P = zeros(n,n);
for j=1:n

P(:,j) = G(:,j)/sum(G(:,j));
end

Lecture 27 62

To obtain the stationary vector…

function [w,err]= StatVec(P,v,tol,kMax)
% Iterate to get stationary vector w
w = Update(P,v);
err = max(abs(w-v));
k = 1;
while k<kMax && err>tol

v = w;
w = Update(P,v);
err = max(abs(w-v));
k = k+1;

end

Lecture 27 63

Stationary vector represents how “popular” the pages are
PageRank

0.5723
0.8206
0.7876
0.2609
0.2064
0.8911
0.2429
0.4100

0.8911
0.8206
0.7876
0.5723
0.4100
0.2609
0.2429
0.2064

6
2
3
1
8
4
7
5

4
2
3
6
8
1
7
5

sorted pRstatVec idx

Lecture 27 64

0.5723
0.8206
0.7876
0.2609
0.2064
0.8911
0.2429
0.4100

-0.8911
-0.8206
-0.7876
-0.5723
-0.4100
-0.2609
-0.2429
-0.2064

6
2
3
1
8
4
7
5

4
2
3
6
8
1
7
5

sorted pRstatVec idx

[sorted, idx] = sort(-statVec);
for k= 1:length(statVec)

j = idx(k); % index of kth largest
pR(j) = k;

end

Lecture 27 65

The random walk idea gets the transitional probabilities
from connectivity. So how to deal with dead ends?

Repeat:
You are on a webpage.
There are m outlinks.
Choose one at random.
Click on the link.

What if there are no outlinks?

Lecture 27 66

The random walk idea gets transitional probabilities from
connectivity. Can modify the random walk to deal with dead ends.

Repeat:
You are on a webpage.
If there are no outlinks

Pick a random page and go there.
else

Flip an unfair coin.
if heads

Click on a random outlink and go there.
else

Pick a random page and go there.
end

end

In practice, an unfair coin

with prob .85 heads works

well.

This results in a different
transitional probability matrix.

Lecture 27 68

Quantifying Importance

How do you rank web pages for importance given
that you know the link structure of the Web, i.e.,
the in-links and out-links for each web page?

A related question:
How does a deleted or added link on a webpage
affect its “rank”?

Lecture 27 113

What we learned…

Develop/implement algorithms for problems
Develop programming skills

Design, implement, document, test, and debug

Programming “tool bag”
Control flow (if-else; loops)
Functions for reducing redundancy
Data structures
Graphics
File handling

Lecture 27 114

What we learned… (cont’d)

Applications and concepts
Image and sound
Sorting and searching—you should know the
algorithms covered
Divide-and-conquer strategies
Approximation and error
Simulation
Computational effort and efficiency

Lecture 27 116

Final Exam

Mon 12/10, 9-11:30am, Barton West
Covers entire course, but emphasizes material
after Prelim 3
Closed-book exam, no calculators
Bring student ID card

Check for announcements on webpage:
Study break office/consulting hours
Review questions
List of potentially useful functions

Lecture 27 117

Final Exam

Mon 12/10, 9-11:30am, Barton West
Covers entire course, but emphasizes material
after Prelim 3
Closed-book exam, no calculators
Bring student ID card

Check for announcements on webpage:
Study break office/consulting hours
Review questions
List of potentially useful functions

Best wishes
and

good luck with all your exams!

