CS1112 Lecture 25

= Previous Lecture:
= Linear Search
= Bubble Sort, Insertion Sort

= Today’s Lecture:
= “Divide and conquer” strategies
= Binary search
= Merge sort
= Recursion

= Announcements:

= Discussion this week in classrooms (today and up to I:10pm tomorrow).
Attendance this week is optional, but the posted exercise is required!

Prelim 3 will be returned at end of lecture. If your paper isn’t here, pick it
up from CSI 112 consultants in ACCEL during consulting hrs (today 4-
10pm; consulting resumes Mon 4pm)

Project 6 due Dec 2™. Part | posted; Part 2 to be posted today. Can wait
until next Tues lecture to do Part 2.2, but do Part | and Part 2.1 by next
Tues!

Other efficiency considerations

= Worst case, best case, average case
Use of subfunction incurs an “overhead”
Memory use and access

Example: Rather than directing the insert process
to a subfunction, have it done “in-line.”

Also, Insertion sort can be done “in-place,” i.e.,
using “only” the memory space of the original
vector.

Lecture 25 3

function x = insertSort(x)
% Sort vector x in ascending order with insertion sort

n = length(x);
for i= 1:n-1
% Sort x(1l:i+1) given that x(1:i) is sorted

J=1;
need2swap= x(J+1) < x(J);
while need2swap

=

swap x(j+1) and x(j§) \0o\%

temp= x(j); e

x()= xG+); -,
THo -

x(J+1)= temp O“\Q’\

J=3-1;
need2swap= j>0 && x(J+1)<x();
end
end

Lecture 25 4

An ordered (sorted) list

The Manhattan phone :_
book has 1,000,000+
entries.

How is it possible to
locate a name by
examining just a tiny,
tiny fraction of those
entries!?

Lecture 25 5

Key idea of “phone book search”: repeated halving
To find the page containing Pat Reed’s number-...

while (Phone book is longer than | page)
Open to the middle page.
if “Reed” comes before the first entry,
Rip and throw away the 2" half.
else
Rip and throw away the |5t half.
end
end

Lecture 25 7

What happens to the phone book length?

Original: 3000 pages
After 1 rip: 1500 pages
After 2 rips: 750 pages
After 3 rips: 375 pages
After 4 rips: 188 pages
After 5 rips: 94 pages

After 12 rips: 1 page

Lecture 25 8

Lecture slides

CS1112 Lecture 25

Binary Search
Repeatedly halving the size of the “search space” is

the main idea behind the method of binary search.

An item in a sorted array of length n can be
located with just log, n comparisons.

Lecture 25 9

% Linear Search
% ¥ is index of first occurrence of value x in vector v.

% £ is -1 if x not found.

k= 1;
while k<=length(v) &&
k= k + 1;

end
if k>length(v)
f= -1; % signal for x not found

else
= k;
end et
arg
aga™s) Ze
ns £ Ca5™
X’ L WOrS!
cormP 4in ;
n are 0 edee(\gth(\’)

Lecture 25 10

Binary Search
Repeatedly halving the size of the “search space” is

the main idea behind the method of binary search.

An item in a sorted array of length n can be
located with just log, n comparisons.

“Savings” is significant! n 10g2(n)
100 7
1000 10
10000 13

Lecture 25 1

Binary search: target x =70

12 3 4 5 6 7 8 9 1011 12

v|[12]15[33[35[42|45]51]62]|73| 75|86 98|
] 1]
L: v(Mid) <= x

So throw away the

: left half...

Lecture 25 12

Binary search: target x =70

1 2 3 4 5 6 7 8 9 1011 12

v|12]15|33|35[42[45]|51|62| 73| 75|86] 98|
1 1 1

X < v(Mid)

So throw away the
right half...

Lecture 25 13

Binary search: target x =70

1 2 3 4 5 6 7 8 9 1011 12

v|12[15]|33]35[42]45]51[62] 73| 75|86]98]
LI I |

L: [6] v(Mid) <= x
Mid:
R: [9]

So throw away the
left half...

Lecture 25 14

Lecture slides

CS1112 Lecture 25

v|[12]|15]33[35]42[45

Binary search: target x =70

12 3 4 5 6 7 8 9 1011 12

| 75]86] 98]

111

v(Mid) <= x

L:
Mid:
R: El

So throw away the
left half..

Lecture 25 15

Binary search: target x =70

12 3 4 5 6 7 8 9 1011 12

v|12]|15[33[35[42]45]51 75[86 98]
Tt

Done because
R-L = 1

Lecture 25 16

fi
%
%
%

%
L

%
w

unction L = binarySearch(x, v)
Find position after which to insert x. v(1)<.<v(end).
L is the index such that v(L) <= x < v(L+1);
L=0 if x<v(1). If x>v(end), L=length(v) but x~=v(L).

Maintain a search window [L..R] such that v(L)<=x<v(R).
Since x may not be in v, initially set ...
=0; R=length(v)+1;

Keep halving [L..R] until R-L is 1,

always keeping v(L) <= x < v(R)

hile R ~= L+1

m= Floor((L+R)/2); % middle of search window
if

Binary search is efficient, but how do we sort a
vector in the first place so that we can use binary
search?

= Many different algorithms out there...
= We saw bubble sort and insertion sort
= Let’s look at merge sort

= An example of the “divide and conquer”
approach

= We'll compare their efficiency later

Lecture 25 23

Merge sort: Motivation

What if those two helpers
each had two sub-helpers?

And the sub-helpers each had
two sub-sub-helpers? And..

Subdivide the sorting task

[i]efu]cfe]alo]rfr]rfo]rfc]I]n]

[n]efu]cfe]x]afof [Flc]rfolr]cfa]n]

Lecture 25 2

Lecture s

lides

CS1112 Lecture 25

Subdivide again

HEEEEEEEEEEEEEER
[[efulclefx]afe] [Ft]rfofr]c]a]n]

[ule[ule] [efxafe] [F]Lfr]o] [RIc]a]N]

Lecture 25

Now merge

HEEEEEEEEEEEEEER
HEEEEEEEn EEEEREEE

HEEEREEEEEREEEEREEEN

[Els] [efw] [e]«] [ale] [F]t] [o]e] [c]r] [3fw]
[210e] [PIe] R[]
L 8

eeeeeee 25

function y = mergeSort(x)

% x is a vector. Yy is a vector

% consisting of the values in x

% sorted from smallest to largest.

n = length(x);
i

The central sub-problem is the merging of two
sorted arrays into one single sorted array

EBEIESE

|15[42]55]65[75]

|12[15]33]35[42]45[55]65] 75]

f n==1
y = X3
else
m = Ffloor(n/2);
yL = mergeSortL(x(1:m));
yR = mergeSortR(x(m+1:n));
y = merge(yL,yR);
end
Merge
i
x: [12]33[35] 8] ix:[T]
i

\zl

H

y:|15]42]55]65]|75]

N
-
N

ix<=4 and iy<=5: x(ix) <= y(iy) ???

H

Merge
1 1
X: ix:
1 |

y:[15]42]55]65]|75]

4
ecfie] | P[]]|

ix<=4 and iy<=5: x(ix) <= y(iy) VYES

<
[-]

-
N
H

Lecture slides

CS1112 Lecture 25

function z = merge(X,y)

Merge nx = length(x); ny = length(y);
z = zeros(1l, nx+ny);
1 ix =1; iy = 1; iz = 1;

while ix<=nx && iy<=ny

2[4
|

y:[15[42[55]65]75|

X
[]

;
[-]

end
1 % Deal with remaining values in x or y

S EE] I I I

ix<=4 and i1y<=5: x(ix) <= y(iy) ???

-
N
H

function y = mergeSort(x)

% x is a vector. Yy is a vector

% consisting of the values in x

% sorted from smallest to largest.

n = length(x);

if n=
y = X3

else
m = Ffloor(n/2);
yL = mergeSortL(x(1:m));
yR = mergeSortR(x(m+1:n));
y = merge(yL,yR);

end

Lecture 25 Y

function y = mergeSortL(x)

% x is a vector. Yy is a vector

% consisting of the values iIn x

% sorted from smallest to largest.

n = length(x);

function y = mergeSort(x)

% x Is a vector. y iIs a vector

% consisting of the values iIn Xx

% sorted from smallest to largest.

n = length(x);

it n==
y = X;

else
m = floor(n/2);
yL = mergeSort(x(1:m));
yR = mergeSort(x(m+1:n));
y = merge(yL,yR);

end

Lecture 25 62

Lecture slides

if n==
y = X;
else
m = Floor(n/2);
yL = mergeSortL L(x(1:m));
yR = mergeSortL_ R(x(m+1:n));
y = merge(yL,yR);
end
function y=mergeSort(x)
n=length(x);
if n==1
y=X;
etee m=Floor(n/2); mer geSort — 1 catt
yL=mergeSort(x(1:m)); (2 34 5 & < 2

yR=mergeSort(x(m+1:n)); (msd) m
y=merge(yL,yR); WW%C 7

(:UI\/ MS‘?E@”’%‘"

\ 7N
o o \V\ ey ”}R&"‘ mmr
i p

G Msl‘rlhwg
Wlfq’D MG.‘S il MS% Ml I\D('L

end

ms L

Lecture 25 66

