
CS1112 Lecture 25

Lecture slides 1

Previous Lecture:
Linear Search
Bubble Sort, Insertion Sort

Today’s Lecture:
“Divide and conquer” strategies

Binary search
Merge sort
Recursion

Announcements:
Discussion this week in classrooms (today and up to 1:10pm tomorrow).
Attendance this week is optional, but the posted exercise is required!
Prelim 3 will be returned at end of lecture. If your paper isn’t here, pick it
up from CS1112 consultants in ACCEL during consulting hrs (today 4-
10pm; consulting resumes Mon 4pm)
Project 6 due Dec 2nd. Part 1 posted; Part 2 to be posted today. Can wait
until next Tues lecture to do Part 2.2, but do Part 1 and Part 2.1 by next
Tues!

Lecture 25 3

Other efficiency considerations

Worst case, best case, average case
Use of subfunction incurs an “overhead”
Memory use and access

Example: Rather than directing the insert process
to a subfunction, have it done “in-line.”
Also, Insertion sort can be done “in-place,” i.e.,
using “only” the memory space of the original
vector.

Lecture 25 4

function x = insertSort(x)
% Sort vector x in ascending order with insertion sort

n = length(x);
for i= 1:n-1

% Sort x(1:i+1) given that x(1:i) is sorted
j= i;
need2swap= x(j+1) < x(j);
while need2swap

% swap x(j+1) and x(j)
temp= x(j);
x(j)= x(j+1);
x(j+1)= temp;

j= j-1;
need2swap= j>0 && x(j+1)<x(j);

end
end

Sortin
g is d

one “in-place.”

Same is t
rue for Bubble Sort.

Lecture 25 5

An ordered (sorted) list

The Manhattan phone
book has 1,000,000+
entries.

How is it possible to
locate a name by
examining just a tiny,
tiny fraction of those
entries?

Lecture 25 7

Key idea of “phone book search”: repeated halving

To find the page containing Pat Reed’s number…

while (Phone book is longer than 1 page)
Open to the middle page.
if “Reed” comes before the first entry,

Rip and throw away the 2nd half.
else

Rip and throw away the 1st half.
end

end

Lecture 25 8

What happens to the phone book length?

Original: 3000 pages
After 1 rip: 1500 pages
After 2 rips: 750 pages
After 3 rips: 375 pages
After 4 rips: 188 pages
After 5 rips: 94 pages

:
After 12 rips: 1 page

CS1112 Lecture 25

Lecture slides 2

Lecture 25 9

Binary Search

Repeatedly halving the size of the “search space” is
the main idea behind the method of binary search.

An item in a sorted array of length n can be
located with just log2 n comparisons.

Lecture 25 10

% Linear Search
% f is index of first occurrence of value x in vector v.
% f is -1 if x not found.
k= 1;
while k<=length(v) && v(k)~=x

k= k + 1;
end
if k>length(v)

f= -1; % signal for x not found
else

f= k;
end

n comparisons again
st the targe

t

are needed in worst case,

n=le
ngth

(v).

Lecture 25 11

Binary Search

Repeatedly halving the size of the “search space” is
the main idea behind the method of binary search.

An item in a sorted array of length n can be
located with just log2 n comparisons.

“Savings” is significant! n log2(n)
100 7

1000 10
10000 13

Lecture 25 12

12 15 3533 42 45 51 7362 75 86 98

Binary search: target x = 70

v

L:

Mid:

R:

1

6

12

1 2 3 4 5 6 7 8 9 10 11 12

v(Mid) <= x

So throw away the
left half…

Lecture 25 13

12 15 3533 42 45 51 7362 75 86 98v

L:

Mid:

R:

6

9

12

1 2 3 4 5 6 7 8 9 10 11 12

x < v(Mid)

So throw away the
right half…

Binary search: target x = 70

Lecture 25 14

12 15 3533 42 45 51 7362 75 86 98v

L:

Mid:

R:

6

7

9

1 2 3 4 5 6 7 8 9 10 11 12

v(Mid) <= x

So throw away the
left half…

Binary search: target x = 70

CS1112 Lecture 25

Lecture slides 3

Lecture 25 15

12 15 3533 42 45 51 7362 75 86 98v

L:

Mid:

R:

7

8

9

1 2 3 4 5 6 7 8 9 10 11 12

v(Mid) <= x

So throw away the
left half…

Binary search: target x = 70

Lecture 25 16

12 15 3533 42 45 51 7362 75 86 98v

L:

Mid:

R:

8

8

9

1 2 3 4 5 6 7 8 9 10 11 12

Done because
R-L = 1

Binary search: target x = 70

function L = binarySearch(x, v)
% Find position after which to insert x. v(1)<…<v(end).
% L is the index such that v(L) <= x < v(L+1);
% L=0 if x<v(1). If x>v(end), L=length(v) but x~=v(L).

% Maintain a search window [L..R] such that v(L)<=x<v(R).
% Since x may not be in v, initially set ...
L=0; R=length(v)+1;

% Keep halving [L..R] until R-L is 1,
% always keeping v(L) <= x < v(R)
while R ~= L+1

m= floor((L+R)/2); % middle of search window
if

else

end
end

Lecture 25 23

Binary search is efficient, but how do we sort a
vector in the first place so that we can use binary
search?

Many different algorithms out there...
We saw bubble sort and insertion sort
Let’s look at merge sort
An example of the “divide and conquer”
approach
We’ll compare their efficiency later

Merge sort: Motivation

What if those two helpers
each had two sub-helpers?

If I have two helpers, I’d…
• Give each helper half the array to

sort
• Then I get back the sorted

subarrays and merge them.

And the sub-helpers each had
two sub-sub-helpers? And…

Lecture 25 26

Subdivide the sorting task

J NR CP DF LA QB KM GH E

A QB KM GH E J NR CP DF L

CS1112 Lecture 25

Lecture slides 4

Lecture 25 27

Subdivide again

A QB KM GH E J NR CP DF L

M GH E A QB K P DF L J NR C

Lecture 25 30

Now merge

G ME H A QB K D PF L J NC R

J NR CP DF LA QB KM GH E

Lecture 25 35

function y = mergeSort(x)
% x is a vector. y is a vector
% consisting of the values in x
% sorted from smallest to largest.

n = length(x);
if n==1

y = x;
else

m = floor(n/2);
yL = mergeSortL(x(1:m));
yR = mergeSortR(x(m+1:n));
y = merge(yL,yR);

end

Lecture 25 36

The central sub-problem is the merging of two
sorted arrays into one single sorted array

12 33 4535

15 42 6555 75

12 15 3533 42 45 55 7565

12 33 4535

15 42 6555 75

x:

y:

z:

1

1

1

ix:

iy:

iz:

Merge

ix<=4 and iy<=5: x(ix) <= y(iy) ???

12 33 4535

15 42 6555 75

12

x:

y:

z:

1

1

1

ix:

iy:

iz:

Merge

ix<=4 and iy<=5: x(ix) <= y(iy) YES

CS1112 Lecture 25

Lecture slides 5

12 33 4535

15 42 6555 75

12

x:

y:

z:

2

1

2

ix:

iy:

iz:

Merge

ix<=4 and iy<=5: x(ix) <= y(iy) ???

function z = merge(x,y)
nx = length(x); ny = length(y);
z = zeros(1, nx+ny);
ix = 1; iy = 1; iz = 1;
while ix<=nx && iy<=ny

end
% Deal with remaining values in x or y

Lecture 25 59

function y = mergeSort(x)
% x is a vector. y is a vector
% consisting of the values in x
% sorted from smallest to largest.

n = length(x);
if n==1

y = x;
else

m = floor(n/2);
yL = mergeSortL(x(1:m));
yR = mergeSortR(x(m+1:n));
y = merge(yL,yR);

end

Lecture 25 60

function y = mergeSortL(x)
% x is a vector. y is a vector
% consisting of the values in x
% sorted from smallest to largest.

n = length(x);
if n==1

y = x;
else

m = floor(n/2);
yL = mergeSortL_L(x(1:m));
yR = mergeSortL_R(x(m+1:n));
y = merge(yL,yR);

end

Lecture 25 62

function y = mergeSort(x)
% x is a vector. y is a vector
% consisting of the values in x
% sorted from smallest to largest.

n = length(x);
if n==1

y = x;
else

m = floor(n/2);
yL = mergeSort(x(1:m));
yR = mergeSort(x(m+1:n));
y = merge(yL,yR);

end

Lecture 25 66

function y=mergeSort(x)
n=length(x);
if n==1

y=x;
else

m=floor(n/2);
yL=mergeSort(x(1:m));
yR=mergeSort(x(m+1:n));
y=merge(yL,yR);

end

