CS1112 Lecture

= Previous Lecture:
= Acoustic data: frequency computation
= Touchtone phone

= Today’s Lecture:
= Search: Linear Search
= Sort: Bubble Sort and Insertion Sort
= Efficiency Analysis

= Announcements:
= Prelim 3 will be returned on Tues, |1/23

= Thanksgiving break begins Wednesday afternoon, so
attendance at next week’s discussion is optional. Do the
discussion exercise whether or not you attend!

Searching for an item in an unorganized collection?

= May need to look through the whole collection
to find the target item

= E.g, find value x in vector v

v [
x [

= Linear search
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% Linear Search
% F is index of first occurrence

% of value x in vector v.
% £ is -1 1If x not found.

k= 1;

while k<=length(v) && v(k)~=x
k= k + 1;

end

if k>length(v)
f= -1; % signal for x not found
else
= k;
end

v|[12|35[33[15[42]45|
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Sorting data allows us to search more easily
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The “bubble” process

Compare adjacent values.
Swap if “out of order.”
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The “bubble” process

Compare adjacent values.
Swap if “out of order.”
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The “bubble” process

Compare adjacent values.
Swap if “out of order.”
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The “bubble” process

The smallest (lightest)
value “bubbles” to the top

Done in one pass through
the vector

Bubble.m
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The second “bubble” process

Compare adjacent values.
Swap if “out of order.”
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The second “bubble” process

Compare adjacent values.
Swap if “out of order.”
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The second “bubble” process

After two bubble processes, the
first two components are
sorted.

Repeatedly apply the bubble
process to sort the whole array
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Sort vector X using the Bubble Sort algorithm

X
Bubble x: [x,C,S] = Bubble(X)
Bubble x(2:6): [x(2:6),C,S] Bubble(x(2:6))
Bubble x(3:6): [x(3:6),C,S] Bubble(x(3:6))
Bubble x(4:6): [x(4:6),C,S] = Bubble(x(4:6))
Bubble x(5:6): [x(5:6),C,S] Bubble(x(5:6))

BubbleSortl.m
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Possible to get a sorted vector before n-1 “bubble” processes

After 2 bubble processes...
Start 3" bubble process

-
-

HEHEB
o
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Possible to get a sorted vector before n-1 “bubble” processes

After the 34 bubble process

Vector is completely sorted (in this
example)

How to improve BubbleSort to
quit early?

BHEB
o
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The Insertion Process

= Given a sorted array X, insert a number y such
that the result is sorted

]
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Insertion

Compare adjacent components:
swap 9 & 4
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Insertion

Compare adjacent components:
swap 8 & 4
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Insertion

Compare adjacent components:
swap 6 & 4
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Insertion
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Compare adjacent components:
DONE! No more swaps.

Insert.m

Sort vector X using the Insertion Sort algorithm
Need to start with a sorted subvector. How do you find one?

X
Length | subvector is “sorted”
Insert x(2): [x(1:2),C,S] = Insert(x(1:2))
Insert X(3): [x(1:3),C,S] = Insert(x(1:3))
Insert x(4): [x(1:4),C,S] = Insert(x(1:4))
Insert x(5): [x(1:5),C,S] = Insert(x(1:5))
Insert x(6): [x(1:6),C,S] = Insert(x(1:6))

InsertionSort.m
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Bubble Sort vs. Insertion Sort

= Both involve comparing adjacent values and
swaps
= On average, which is more efficient?
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Other efficiency considerations

= Worst case, best case, average case
= Use of subfunction incurs an “overhead”
= Memory use and access

Example: Rather than directing the insert process
to a subfunction, have it done “in-line.”

= Also, Insertion sort can be done “in-place,” i.e.,
using “only” the memory space of the original
vector.
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function x = insertSort(x)
% Sort vector X in ascending order with insertion sort

n = length(x);

for i= 1:n-1
% Sort x(1:i+1) given that x(1:i) is sorted

end
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function x = insertSort(x)
% Sort vector X in ascending order with insertion sort

n = length(x);

for i= 1:n-1
% Sort x(1l:i+1) given that x(1:i) is sorted
i= i

need2swap=

while need2swap

% swap x(j+1) and x(J)

J=1i-1;
need2swap=
end
end
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