CS1112 Lecture

= Previous Lecture:
= Acoustic data: frequency computation
= Touchtone phone

= Today’s Lecture:
= Search: Linear Search
= Sort: Bubble Sort and Insertion Sort
= Efficiency Analysis

= Announcements:
= Prelim 3 will be returned on Tues, |1/23

= Thanksgiving break begins Wednesday afternoon, so
attendance at next week’s discussion is optional. Do the
discussion exercise whether or not you attend!

Searching for an item in an unorganized collection?

= May need to look through the whole collection
to find the target item

= E.g, find value x in vector v

v [
x [

= Linear search

Lecture 24 3

% Linear Search
% F is index of first occurrence

% of value x in vector v.
% £ is -1 1If x not found.

k= 1;

while k<=length(v) && v(k)~=x
k= k + 1;

end

if k>length(v)
f= -1; % signal for x not found
else
= k;
end

v|[12|35[33[15[42]45|

x 3]

Lecture 24 5

Sorting data allows us to search more easily

Abert.Fat
Mlan_Wong

Anderson, Bruce
Boston Marathon Top Women Finishers

Ann
f—{Bailey . Bob
Bartl, Rainrar

Official e~ State Country ~ Ctz
22525 ETH

o . Bob

[Beaudry, Mark 22527 RUS

Berry. James 22658 KEN

[Beyss, Michoel 22812 LAT

Blank . Frederick 2:29.48 ETH

| |8hss, Brion L 23052 A

7 F12 Olaru, Nuta 23356 ROM

8 F6 Guta, Robe Tola 23437 ETH

9 FL Grigoryeva, Lidiya 23537 RUS
Name Score Grade F35 Hood, Stephanie A. 2144:44 [USA CAN

Jorge 92.1 F14 Robson, Denise C. 24554 NS can

A o5 F11 Chemjor, Magdalne 24625 KEN
F101 hdanova, Firaya 24717 FL Usa Rus

ClEm 20 FI5 Mayger, Eliza M. 24736 AUs

Chi 88.9 F24 Anklam, Ashley A 24843 MN UsA

Minale 88.1

The “bubble” process

Compare adjacent values.
Swap if “out of order.”

Lecture 24 10

The “bubble” process

Compare adjacent values.
Swap if “out of order.”

Lecture 24 1

Lecture slides

CS1112 Lecture

The “bubble” process

Compare adjacent values.
Swap if “out of order.”

Lecture 24 14

The “bubble” process

The smallest (lightest)
value “bubbles” to the top

Done in one pass through
the vector

Bubble.m

Lecture 24 15

The second “bubble” process

Compare adjacent values.
Swap if “out of order.”

Lecture 24 16

The second “bubble” process

Compare adjacent values.
Swap if “out of order.”

Lecture 24 17

The second “bubble” process

After two bubble processes, the
first two components are
sorted.

Repeatedly apply the bubble
process to sort the whole array

Lecture 24 20

Lecture slides

Sort vector X using the Bubble Sort algorithm

X
Bubble x: [x,C,S] = Bubble(X)
Bubble x(2:6): [x(2:6),C,S] Bubble(x(2:6))
Bubble x(3:6): [x(3:6),C,S] Bubble(x(3:6))
Bubble x(4:6): [x(4:6),C,S] = Bubble(x(4:6))
Bubble x(5:6): [x(5:6),C,S] Bubble(x(5:6))

BubbleSortl.m

Lecture 24 2

CS1112 Lecture

Possible to get a sorted vector before n-1 “bubble” processes

After 2 bubble processes...
Start 3" bubble process

-
-

HEHEB
o

Lecture 24 23

Possible to get a sorted vector before n-1 “bubble” processes

After the 34 bubble process

Vector is completely sorted (in this
example)

How to improve BubbleSort to
quit early?

BHEB
o

Lecture 24 2

The Insertion Process

= Given a sorted array X, insert a number y such
that the result is sorted

]

Lecture 24 29

Insertion

Compare adjacent components:
swap 9 & 4

Lecture 24 32

Insertion

Compare adjacent components:
swap 8 & 4

Lecture 24 33

Lecture slides

Insertion

Compare adjacent components:
swap 6 & 4

Lecture 24 2

CS1112 Lecture

Insertion

Lecture 24 3

Compare adjacent components:
DONE! No more swaps.

Insert.m

Sort vector X using the Insertion Sort algorithm
Need to start with a sorted subvector. How do you find one?

X
Length | subvector is “sorted”
Insert x(2): [x(1:2),C,S] = Insert(x(1:2))
Insert X(3): [x(1:3),C,S] = Insert(x(1:3))
Insert x(4): [x(1:4),C,S] = Insert(x(1:4))
Insert x(5): [x(1:5),C,S] = Insert(x(1:5))
Insert x(6): [x(1:6),C,S] = Insert(x(1:6))

InsertionSort.m

Lecture 24 36

Bubble Sort vs. Insertion Sort

= Both involve comparing adjacent values and
swaps
= On average, which is more efficient?

IITTm [

M 1
EEEE 1]
o 1M
[[LITTT]

Lecture 24 37

Other efficiency considerations

= Worst case, best case, average case
= Use of subfunction incurs an “overhead”
= Memory use and access

Example: Rather than directing the insert process
to a subfunction, have it done “in-line.”

= Also, Insertion sort can be done “in-place,” i.e.,
using “only” the memory space of the original
vector.

Lecture 24 38

function x = insertSort(x)
% Sort vector X in ascending order with insertion sort

n = length(x);

for i= 1:n-1
% Sort x(1:i+1) given that x(1:i) is sorted

end

Lecture 24 50

Lecture slides

function x = insertSort(x)
% Sort vector X in ascending order with insertion sort

n = length(x);

for i= 1:n-1
% Sort x(1l:i+1) given that x(1:i) is sorted
i= i

need2swap=

while need2swap

% swap x(j+1) and x(J)

J=1i-1;
need2swap=
end
end

Lecture 24 51

