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Previous Lecture:
Working with sound files

Today’s Lecture:
Frequency computation
Touchtone phone

Announcement:
Discussion in the computer lab this week.  Bring 
headphones.
Prelim 3 tonight at 7:30pm, Statler Auditorium

Lastnames A-O:  main seating area
Lastnames P-Z:  balcony

No consulting tonight 7-10pm
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Example:  playlist

Suppose we have a set of .wav files, e.g.,

austin.wav
sp_beam.wav
sp_oz6.wav

and wish to play them in succession.
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Possible solution

playList = {'austin',…
'sp_beam',…
'sp_oz6'};

for k=1:length(playList)
[y,rate] = wavread(playList{k});
sound(y,rate)

end
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Store the data from wav files as a struct array for 
play back later

function SA = wavSegments(wnames)
% Build a struct array SA such that 
%   SA(k).data stores the data of wnames{k}
%   SA(k).rate stores the sampling rate of
%               wav file wnames{k}

for k= 1:length(wnames)
[y,rate] = wavread(wnames{k});
SA(k)= struct('data', y, 'rate', rate);

end
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function playSegments(SA)
% Play sound data stored in struct array SA.
%   SA(k).data stores the k-th segment of 
%               sound data (from wavread)
%   SA(k).rate is sampling rate of k-th seg.

for k= 1:length(SA)
theData= SA(k).data;
theRate= SA(k).rate;
sound(theData,theRate)

end

Next call to sound will 
not begin until after the 
previous call is complete.

Not true in older 
versions!  Calculate and 
add your own pause in 
that case.  

We looked at the time domain
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What about the frequency domain?

>> phone
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A “pure-tone” sound is a sinusoidal function

( )tty ωπ2sin)( =

ω = the frequency

Higher frequency means that y(t) changes 
more rapidly with time.
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omega = 4

( )tty 42sin)( ⋅= π
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Still looking at the 
time domain
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Digitize for Graphics

% Sample “Rate”
n = 200

% Sample times
tFinal = 1;
t = 0:(1/n):tFinal

% Digitized Plot…
omega = 8;
y= sin(2*pi*omega*t)
plot(t,y)

Digitize for Sound

% Sample Rate
Fs = 32768

% Sample times
tFinal = 1;
t = 0:(1/Fs):tFinal

% Digitized sound…
omega = 800;
y= sin(2*pi*omega*t);
sound(y,Fs)
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Equal-Tempered Tuning

0 A    55.00  110.00  220.00  440.00 880.00  1760.00 
1 A#   58.27  116.54  233.08  466.16   932.33  1864.66 
2 B    61.74  123.47  246.94  493.88   987.77  1975.53 
3 C    65.41  130.81  261.63 523.25  1046.50  2093.01 
4 C#   69.30  138.59  277.18  554.37  1108.73  2217.46
5 D    73.42  146.83  293.67  587.33  1174.66  2349.32 
6 D#   77.78  155.56  311.13  622.25  1244.51  2489.02
7 E    82.41  164.81  329.63  659.26  1318.51  2637.02 
8 F    87.31  174.61  349.23  698.46  1396.91  2793.83 
9 F#   92.50  185.00  369.99  739.99  1479.98  2959.95
10 G   98.00  196.00  391.99  783.99  1567.98  3135.96 
11 G# 103.83  207.65  415.31  830.61  1661.22  3322.44 
12 A  110.00  220.00  440.00  880.00  1760.00  3520.00 

Entries are frequencies. Each column is an octave.
Magic factor =  2^(1/12). C3 = 261.63, A4 = 440.00
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“Adding” Sinusoids averaging the sine values

Fs = 32768; tFinal = 1;
t  = 0:(1/Fs):tFinal;

C3  = 261.62;
yC3 = sin(2*pi*C3*t);
A4  = 440.00;
yA4 = sin(2*pi*A4*t);
y   = (yC3 + yA4)/2;

sound(y,Fs)
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Application:  touchtone telephones

Make a signal by combining two sinusoids

A frequency is associated with each row & column.

697

770

852

941

1209 1336 1477

So two frequencies are associated with each button.

The “5”-Button 
corresponds 

to
(770,1336)

Each button 

has its own 

2-frequency 

“fingerprint”!
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Signal for button 5:

Fs = 32768;
tFinal = .25;
t  = 0:(1/Fs):tFinal;

yR = sin(2*pi*770*t);
yC = sin(2*pi*1336*t)
y  = (yR + yC)/2;

sound(y,Fs)
MakeShowPlay.m
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This is the “fingerprint”

of button ‘5’
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playAllButtons.m
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To Minimize Ambiguity…

No frequency is a multiple of another
The difference between any two frequencies does not 
equal any of the frequencies
The sum of any two frequencies does not equal any of 
the frequencies

Why is this important?
I dial a number (send signal).  The receiver of the 
signals get a “noisy” version of the real signal.  How 
will the noisy data be interpreted?

SendNoisy.m
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How to compare two signals (vectors)?

Given two vectors x and y of the same length, the cosine 
of the angle between the two vectors is a measure of the 
correlation between vectors x and y:

cos_xy.m
ShowCosines.m

Small cosine low correlation
High cosine highly correlated
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Sending and deciphering noisy signals

Randomly choose a button
Choose random row and column numbers

Construct the real signal (MakeShowPlay)
Add noise to the signal (SendNoisy)
Compute cosines to decipher the signals 
(ShowCosines)
See Eg13_2
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What does the signal look like for a multi-digit call?
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Each band approximately
matches one of the 
twelve “fingerprints.”
There is noise between 
the button pushes.

One of the most difficult 
problems is how to segment
the multi-button signal!


