
CS1112 Lecture 23

Lecture slides 1

Previous Lecture:
Working with sound files

Today’s Lecture:
Frequency computation
Touchtone phone

Announcement:
Discussion in the computer lab this week. Bring
headphones.
Prelim 3 tonight at 7:30pm, Statler Auditorium

Lastnames A-O: main seating area
Lastnames P-Z: balcony

No consulting tonight 7-10pm

Lecture 23 2Lecture 22 2

Example: playlist

Suppose we have a set of .wav files, e.g.,

austin.wav
sp_beam.wav
sp_oz6.wav

and wish to play them in succession.

Lecture 23 3Lecture 22 3

Possible solution

playList = {'austin',…
'sp_beam',…
'sp_oz6'};

for k=1:length(playList)
[y,rate] = wavread(playList{k});
sound(y,rate)

end

Lecture 23 4Lecture 22 4

Store the data from wav files as a struct array for
play back later

function SA = wavSegments(wnames)
% Build a struct array SA such that
% SA(k).data stores the data of wnames{k}
% SA(k).rate stores the sampling rate of
% wav file wnames{k}

for k= 1:length(wnames)
[y,rate] = wavread(wnames{k});
SA(k)= struct('data', y, 'rate', rate);

end

Lecture 23 5Lecture 22 5

function playSegments(SA)
% Play sound data stored in struct array SA.
% SA(k).data stores the k-th segment of
% sound data (from wavread)
% SA(k).rate is sampling rate of k-th seg.

for k= 1:length(SA)
theData= SA(k).data;
theRate= SA(k).rate;
sound(theData,theRate)

end

Next call to sound will
not begin until after the
previous call is complete.

Not true in older
versions! Calculate and
add your own pause in
that case.

We looked at the time domain

0 1 2 3 4 5 6

x 104

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Austin Powers

Sample number

Time

CS1112 Lecture 23

Lecture slides 2

Lecture 23 7

What about the frequency domain?

>> phone

0 0.01 0.02 0.03 0.04 0.05
-1

-0.5

0

0.5

1

Time (sec)

S
ig

na
l

Time Response

0 500 1000 1500 2000
10

-10

10
-5

10
0

10
5

Frequency (Hz)

S
ig

na
l P

ow
er

Spectrum

Lecture 23 8

A “pure-tone” sound is a sinusoidal function

()tty ωπ2sin)(=

ω = the frequency

Higher frequency means that y(t) changes
more rapidly with time.

Lecture 23 9

0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

omega = 4

()tty 42sin)(⋅= π

0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

omega = 8

()tty 82sin)(⋅= π

Still looking at the
time domain

Lecture 23 10

Digitize for Graphics

% Sample “Rate”
n = 200

% Sample times
tFinal = 1;
t = 0:(1/n):tFinal

% Digitized Plot…
omega = 8;
y= sin(2*pi*omega*t)
plot(t,y)

Digitize for Sound

% Sample Rate
Fs = 32768

% Sample times
tFinal = 1;
t = 0:(1/Fs):tFinal

% Digitized sound…
omega = 800;
y= sin(2*pi*omega*t);
sound(y,Fs)

Lecture 23 11

Equal-Tempered Tuning

0 A 55.00 110.00 220.00 440.00 880.00 1760.00
1 A# 58.27 116.54 233.08 466.16 932.33 1864.66
2 B 61.74 123.47 246.94 493.88 987.77 1975.53
3 C 65.41 130.81 261.63 523.25 1046.50 2093.01
4 C# 69.30 138.59 277.18 554.37 1108.73 2217.46
5 D 73.42 146.83 293.67 587.33 1174.66 2349.32
6 D# 77.78 155.56 311.13 622.25 1244.51 2489.02
7 E 82.41 164.81 329.63 659.26 1318.51 2637.02
8 F 87.31 174.61 349.23 698.46 1396.91 2793.83
9 F# 92.50 185.00 369.99 739.99 1479.98 2959.95
10 G 98.00 196.00 391.99 783.99 1567.98 3135.96
11 G# 103.83 207.65 415.31 830.61 1661.22 3322.44
12 A 110.00 220.00 440.00 880.00 1760.00 3520.00

Entries are frequencies. Each column is an octave.
Magic factor = 2^(1/12). C3 = 261.63, A4 = 440.00

Lecture 23 12

0 0.005 0.01 0.015

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 0.005 0.01 0.015

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 0.005 0.01 0.015

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Middle C:

A above
middle C:

+ =

“Adding” Sinusoids

262=ω

440=ω

playTwoNotes.m

CS1112 Lecture 23

Lecture slides 3

Lecture 23 13

“Adding” Sinusoids averaging the sine values

Fs = 32768; tFinal = 1;
t = 0:(1/Fs):tFinal;

C3 = 261.62;
yC3 = sin(2*pi*C3*t);
A4 = 440.00;
yA4 = sin(2*pi*A4*t);
y = (yC3 + yA4)/2;

sound(y,Fs)
Lecture 23 14

Application: touchtone telephones

Make a signal by combining two sinusoids

A frequency is associated with each row & column.

697

770

852

941

1209 1336 1477

So two frequencies are associated with each button.

The “5”-Button
corresponds

to
(770,1336)

Each button

has its own

2-frequency

“fingerprint”!

Lecture 23 16

Signal for button 5:

Fs = 32768;
tFinal = .25;
t = 0:(1/Fs):tFinal;

yR = sin(2*pi*770*t);
yC = sin(2*pi*1336*t)
y = (yR + yC)/2;

sound(y,Fs)
MakeShowPlay.m

Lecture 23 17

This is the “fingerprint”

of button ‘5’

50 100 150 200 250 300
-1

-0.5

0

0.5

1

Original Signal (Row = 2, Col = 2)

playAllButtons.m

Lecture 23 19

To Minimize Ambiguity…

No frequency is a multiple of another
The difference between any two frequencies does not
equal any of the frequencies
The sum of any two frequencies does not equal any of
the frequencies

Why is this important?
I dial a number (send signal). The receiver of the
signals get a “noisy” version of the real signal. How
will the noisy data be interpreted?

SendNoisy.m

CS1112 Lecture 23

Lecture slides 4

Lecture 23 21

How to compare two signals (vectors)?

Given two vectors x and y of the same length, the cosine
of the angle between the two vectors is a measure of the
correlation between vectors x and y:

cos_xy.m
ShowCosines.m

Small cosine low correlation
High cosine highly correlated

Lecture 23 22

Sending and deciphering noisy signals

Randomly choose a button
Choose random row and column numbers

Construct the real signal (MakeShowPlay)
Add noise to the signal (SendNoisy)
Compute cosines to decipher the signals
(ShowCosines)
See Eg13_2

Lecture 23 23

What does the signal look like for a multi-digit call?

0 1 2 3 4 5

−1.5

−1

−0.5

0

0.5

1

1.5

Buttons pushed at equal time intervals

0 1 2 3 4 5 6 7 8 9

x 10
−3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Button = 1 Freq = (697,1209)

Each band
matches one of
the twelve
“fingerprints”

“Perfect” signal

Lecture 23 24

0 0.5 1 1.5 2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

“Noisy” signal

Buttons pushed at unequal time intervals

Each band approximately
matches one of the
twelve “fingerprints.”
There is noise between
the button pushes.

One of the most difficult
problems is how to segment
the multi-button signal!

