
CS1112 Lecture 12

Lecture slides 1

Previous Lecture:
Probability and random numbers

1-d array—vector

Today’s Lecture:
More examples on vectors
Simulation

Announcement:
Discussion this week in computer lab UP B7
Project 3 due Oct 14. Use the lab computers if the
simulator doesn’t work with your computer.

Lecture 12 2

Simulation

Imitates real system
Requires judicious use of random numbers
Requires many trials

opportunity to practice working with vectors!

Lecture 12 5

2-dimensional random walk
N = 11 Hops = 67

Start in the middle tile,
(0,0).

For each step,
randomly choose
between N,E,S,W and
then walk one tile.
Each tile is 1×1.

Walk until you reach
the boundary.

Lecture 12 12

Another representation for the random step

Observe that each update has the form
xc= xc + ∆x
yc= yc + ∆y

no matter which direction is taken.
So let’s get rid of the if statement!
Need to create two “change vectors” deltaX and
deltaY

deltaX

deltaY

Lecture 12 13

RandomWalk2D_v2.m

Lecture 12 14

Simulate twinkling stars

Get 10 user mouse clicks as locations of 10
stars—our constellation
Simulate twinkling

Loop through all the stars; each has equal likelihood
of being bright or dark
Repeat many times

Can use DrawStar, DrawRect

CS1112 Lecture 12

Lecture slides 2

% No. of stars and star radius
N=10; r=.5;

% Get mouse clicks, store coords in vectors x,y
[x,y] = ginput(N);

% Twinkle!
for k= 1:20 % 20 rounds of twinkling

end

Lecture 12 19

(x4,y4)

(x1,y1)

(x3,y3)

(x2,y2)

(x5,y5)

Example: polygon smoothing

Can store the x-y
coordinates in
vectors x and y

x y

Lecture 12 20

−3 −2 −1 0 1 2 3 4 5 6 7
−2

−1

0

1

2

3

4

5

6

After

Before

First operation: centralize

Move a polygon so that the centroid
of its vertices is at the origin

Lecture 12 21

function [xNew,yNew] = Centralize(x,y)
% Translate polygon defined by vectors
% x,y such that the centroid is on the
% origin. New polygon defined by vectors
% xNew,yNew.

n = length(x);
xBar = sum(x)/n;
yBar = sum(y)/n;
xNew = x-xBar;
yNew = y-yBar;

Vectorized code

Lecture 12 23

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Before

After

Second operation: normalize

Shrink (enlarge) the polygon so that
the vertex furthest from the
(0,0) is on the unit circle

Lecture 12 24

function [xNew,yNew] = Normalize(x,y)
% Resize polygon defined by vectors x,y
% such that distance of the vertex
% furthest from origin is 1

d = max(sqrt(x.^2 + y.^2));
xNew = x/d;
yNew = y/d;

Applied to a vector, max returns
the largest value in the vector

Vectorized ops

CS1112 Lecture 12

Lecture slides 3

Lecture 12 25

−1.5 −1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Third operation: smooth

Obtain a new polygon by connecting
the midpoints of the edges

Lecture 12 26

function [xNew,yNew] = Smooth(x,y)
% Smooth polygon defined by vectors x,y
% by connecting the midpoints of
% adjacent edges

n = length(x);
xNew = zeros(n,1);
yNew = zeros(n,1);

for i=1:n
Compute the midpt of ith edge.
Store in xNew(i) and yNew(i)

end

Lecture 12 30

% Given n, x, y
for i=1:n

xNew(i) = (x(i) + x(i+1))/2;
yNew(i) = (y(i) + y(i+1))/2;

end

Polygon Smoothing

Does above fragment compute the new n-gon?

A: Yes

B: No

Lecture 12 36

Show a simulation of polygon smoothing

Create a polygon with randomly located vertices.

Repeat:
Centralize
Normalize
Smooth

Lecture 12 37

ShowSmooth.m

Lecture 12 38

Color computation

Color is a 3-vector, sometimes called the RGB values

Any color is a mix of red, green, and blue
Example:

c= [0.4 0.6 0]

Each component is a real value in [0,1]
[0 0 0] is black
[1 1 1] is white

CS1112 Lecture 12

Lecture slides 4

Lecture 12 39

Start with drawing a single line segment

a= 0; % x-coord of pt 1
b= 1; % y-coord of pt 1
c= 5; % x-coord of pt 2
d= 3; % y-coord of pt 2
plot([a c], [b d], ‘-*’)

x-values
(a vector)

y-values
(a vector)

Line/marker
format

Lecture 12 40

Making an x-y plot

a= [0 4 3 8]; % x-coords
b= [1 2 5 3]; % y-coords
plot(a, b, ‘-*’)

x-values
(a vector)

y-values
(a vector)

Line/marker
format

0 2 4 6 8 10
0

1

2

3

4

5

6

Lecture 12 41

Drawing a polygon (multiple line segments)

% Draw a rectangle with the lower-left
% corner at (a,b), width w, height h.
x= [a a+w a+w a a]; % x data
y= [b b b+h b+h b]; % y data
plot(x, y)

Fill in the missing vector values!

Lecture 12 44

Coloring a polygon (fill)

% Draw a rectangle with the lower-left
% corner at (a,b), width w, height h,
% and fill it with a color named by c.
x= []; % x data
y= []; % y data
fill(x, y, c)

A built-in function

Lecture 12 47

function paintChips(c1,c2,n)
% n tiles from color c1 to c2

for k= 0:n-1
% Compute color of kth tile
f= ???
v= (1-f)*c1 + f*c2;
% Draw kth tile

end

[0.00 , 1.00 , 1.00]

[0.10 , 0.90 , 1.00]

[0.20 , 0.80 , 1.00]

[0.30 , 0.70 , 1.00]

[0.40 , 0.60 , 1.00]

[0.50 , 0.50 , 1.00]

[0.60 , 0.40 , 1.00]

[0.70 , 0.30 , 1.00]

[0.80 , 0.20 , 1.00]

[0.90 , 0.10 , 1.00]

[1.00 , 0.00 , 1.00]

Lecture 12 49

function paintChips(c1,c2,n)
% n tiles from color c1 to c2

for k= 0:n-1
% Compute color of kth tile
f= ???
v= (1-f)*c1 + f*c2;
% Draw kth tile

end

-2 0 2 4 6
0

1

2

3

[0.0 1.0 1.0]

[0.1 0.9 1.0]

[0.2 0.8 1.0]

[0.3 0.7 1.0]

