- Previous Lecture:
 - Probability and random numbers
 - I-d array—vector
- Today's Lecture:
 - More examples on vectors
 - Simulation
- Announcement:
 - Discussion this week in computer lab UP B7
 - Project 3 due Oct 14. Use the lab computers if the simulator doesn't work with your computer.


```
% No. of stars and star radius
  N=10; r=.5;
% Get mouse clicks, store coords in vectors x,y
  [x,y] = ginput(N);
% Twinkle!
  for k= 1:20 % 20 rounds of twinkling
end
```



```
function [xNew,yNew] = Normalize(x,y)
% Resize polygon defined by vectors x,y
% such that distance of the vertex
% furthest from origin is 1

d = max(sqrt(x.^2 + y.^2));
xNew = x/d;
yNew = y/d;

Applied to a vector, max returns
the largest value in the vector
```



```
function [xNew,yNew] = Smooth(x,y)
% Smooth polygon defined by vectors x,y
% by connecting the midpoints of
% adjacent edges

n = length(x);
xNew = zeros(n,1);
yNew = zeros(n,1);

for i=1:n
    Compute the midpt of ith edge.
    Store in xNew(i) and yNew(i)
end
```


Show a simulation of polygon smoothing

Create a polygon with randomly located vertices.

Repeat:
 Centralize
 Normalize
 Smooth

ShowSmooth.m

```
Color computation

Color is a 3-vector, sometimes called the RGB values

Any color is a mix of red, green, and blue

Example:

c= [0.4 0.6 0]

Each component is a real value in [0,1]

[0 0 0] is black

[1 1] is white
```


Drawing a polygon (multiple line segments) % Draw a rectangle with the lower-left % corner at (a,b), width w, height h. x=[]; % x data y=[]; % y data plot(x, y) Fill in the missing vector values!

