CS1112 Lecture 10

= Previous lecture
= Finite/inexact arithmetic
= Plotting continuous functions using vectors and vectorized code
= User-defined functions
= Function header

= Today’s lecture
= User-defined functions
= Input parameters and return variables
= local memory space
= Subfunction

= Announcements
= Discussion this week in classrooms as listed on roster

= Prelim | will be returned at end of lecture. If your paper isn’t here,
pick it up from CSI 112 consultants in ACCEL during consulting hrs
(starting today after 4pm)

Lecture 10 2

Draw a bulls eye figure with randomly placed dots

= Dots are randomly placed
within concentric rings

= User decides how many
rings, how many dots

Lecture 10 3

function [x, y] = polar2xy(r,theta)

% Convert polar coordinates (r,theta) to
% Cartesian coordinates (X,y)-

% theta is iIn degrees.

rads= theta*pi/180; % radian jon fle

funCl | m
x= r*cos(rads); A var2dy-
y= r*sin(rads); PO

Think of polar2xy as a factory

theta

Lecture 10 6

% Put dots btw circles with radii rRing and (rRing-1)
for rRing= 1:c

% Draw d dots

for count= 1:d

% Generate random dot location
theta=
r=

% Convert from polar to Cartesian
= ta*pi/180;

y= [x,y]l = polar2xy(r,theta);

% Draw the dot

end
end

Lecture 10 7

function [x, y] = polar2xy(r,theta)

Input parameter
Function name list enclosed in
(This file’'s name is ()
polar2xy.m)

Output
parameter list
enclosedin| ]

February 23, 2010 Lecture 10 8

Returning a value # printing a value

You have this function:
function [x, y] = polar2xy(r, theta)
% Convert polar coordinates (r,theta) to
% Cartesian coordinates (x,y). Theta in degrees.

Code to call the above function:
% Convert polar (rl,tl) to Cartesian (x1,yl)
rl=1; tl=30;
[xI, yl1= polar2xy(rl, tl);
plot(xl, yl, ‘b*)

Lecture 10 12

Lecture slides




CS1112 Lecture 10

Given this function:

function m = convertLength(ft,in)
% Convert length from feet (ft) and inches (in)
% to meters (m).

How many proper calls to convertLength are shown below?
% Given T and n
d= convertLength(f,n);
d= convertLength(f*12+n);
d= convertLength(f+n/12);
x= min(convertLength(f,n), 1);
y= convertLength(pi*(f+n/12)"2);

Lecture 10 14

General form of a user-defined function

function [out/, out2, ...]= functionName (inl, in2, ...)
% |-line comment to describe the function
% Additional description of function

Executable code that at some point assigns
values to output parameters outl, out2, ...

= inl,in2, ... are defined when the function begins execution.
Variables inl, in2, ... are called function parameters and they hold
the function arguments used when the function is invoked (called).

= outl, out2, ... are not defined until the executable code in the
function assigns values to them.

Lecture 10 15

dotsInCircles.m

(functions with multiple input parameters)
(functions with a single output parameter)
(functions with multiple output parameters)
(functions with no output parameter)

Lecture 10 16

Comments in functions

m Block of comments after the function header is
printed whenever a user types

help <functionName>
at the Command Window
= [t line of this comment block is searched whenever a
user types
lookfor <someWord>
at the Command Window

|:> = Every function should have a comment block after the
function header that says what the function does

concisely

Lecture 10 17

Accessing your functions

For now*, put your related functions and scripts

in the same directory.
| MyDirectory

dotsInCircles.m polar2xy.m

randDoublle.m drawColorDot.m

Any script/function that
calls polar2xy.m

*The path function gives greater flexibility

Lecture 10 18

Why write user-defined function?

- Easy code re-use—great for “common” tasks
- A function can be tested independently easily

- Keep a driver program clean by keeping detail
code in functions—separate, non-interacting
files

- Facilitate top-down design
=) Software management

Lecture 10 20

Lecture slides




CS1112 Lecture 10

c= input(“How many concentric rings? ");
d= input(“How many dots? *);

% Put dots btwn circles with radii rRing and (rRing-1)
for rRing= 1:c

% Draw d dots

for count= 1:d

% Generate random dot location (polar coord.)
theta=
r=

% Convert from polar to Cartesian
X=
Y= Each task becomes a
function that can be

% Use plot to draw dot

Facilitates top-down design

34

|. Focus on how to draw the figure given just a
specification of what the function DrawStar
does.

2. Figure out how to implement DrawStar.

end implemented and
end tested independently
To specify a function...

... you describe how to use it, e.g.,

function DrawStar(xc,yc,r,c)

% Adds a 5-pointed star to the

% figure window. Star has radius r,
% center(xc,yc) and color c where c
% is one of *

r-, "g", "y, etc.

Given the specification, the user of the
function doesn't need to know the detail
of the function—they can just use it!

To implement a function...

... you write the code so that the function “lives up to” the
specification. E.g.,

r2 = r/(2*(1+sin(pi/10)));
tau = pi/5;
for k=1:11
theta = (2*k-1)*pi/10;
if 2*floor(k/2)~=k
x(k) = xc + r*cos(theta);

y(k) yc + r*sin(theta);
else
X(K) = xc + r2*cos(theta);
y(k) = yc + r2*sin(theta); v youw\\eaxn
end fWorY T2 ics
end Dﬂ(‘)g\,e about ar aph
i . n.
Fill(x,y,c) {unc“onssoo

Software Management

Today:

| write a function
EPerimeter(a,b)
that computes the perimeter of the ellipse

HECE

Software Management

During this year :
You write software that makes extensive use of

EPerimeter(a,b)

Imagine hundreds of programs each with several
lines that reference EPerimeter

Lecture slides




CS1112 Lecture 10

Software Management Script vs. Function

= A function has its own private

Next year: (local) function workspace
that does not interact with
| discover a more efficient way to approximate the workspace of other

functions or the Command
Window workspace
= Variables are not shared
between workspaces even if
they have the same name

ellipse perimeters. | change the implementation of

EPerimeter(a,b)

You do not have to change your software at all.

Lecture 10 33

Execute the statement y= foo(Xx)
What will be printed?

= Matlab looks for a function called foo (m-file called

% Script file function q = absolute
6 Scrip function q P) foo.m)
p=-3; % q is the absolute value of p . o . s
_ | ) if (0<0 = Argument (value of x) is copied into function foo’s local
q= absolute(p); if (p<0) parameter
disp(p) P= -p; = called “pass-by-value,” one of several argument passing
end schemes used by programming languages
=p = Function code executes within its own workspace

= At the end, the function’s output argument (value) is
sent from the function to the place that calls the
function. E.g., the value is assigned to y.
= Function’s workspace is deleted
= If foo is called again, it starts with a new, empty workspace

Lecture 10 35 Lecture 10 52

Subfunction

= There can be more than one function in an M-file

= top function is the main function and has the name of
the file

= remaining functions are subfunctions, accessible only by
the functions in the same m-file

= Each (sub)function in the file begins with a function
header

= Keyword end is not necessary at the end of a
(sub)function

Lecture 10 55

Lecture slides



