
Previous Lecture:
“Divide and conquer” strategies

Binary search
Merge sort

Today’s Lecture:
Some efficiency considerations
“Divide and conquer” strategies (cont’d)—recursion

Merge sort
Removing a character (e.g., the blank) from a string
Tiling (subdividing) a triangle, e.g., Sierpinski Triangle

Announcements
Discussion this week in the computer lab (UP B7)
Project 7 due Thursday at 11pm
CS1112 final will be 12/14 (Mon) 7pm in Barton West

Dec 1, 2009 Lecture 26 6

Merge sort is a “divide-and-conquer” strategy

J NR CP DF LA QB KM GH E

Dec 1, 2009 Lecture 26 7

function y = mergeSort(x)
% x is a vector. y is a vector
% consisting of the values in x
% sorted from smallest to largest.

n = length(x);
if n==1

y = x;
else

m = floor(n/2);
yL = mergeSort(x(1:m));
yR = mergeSort(x(m+1:n));
y = merge(yL,yR);

end

Dec 1, 2009 Lecture 26 8

function y=mergeSort(x)
n=length(x);
if n==1

y=x;
else

m=floor(n/2);
yL=mergeSort(x(1:m));
yR=mergeSort(x(m+1:n));
y=merge(yL,yR);

end

Dec 1, 2009 Lecture 26 9

function y=mergeSort(x)
n=length(x);
if n==1

y=x;
else

m=floor(n/2);
yL=mergeSort(x(1:m));
yR=mergeSort(x(m+1:n));
y=merge(yL,yR);

end

Dec 1, 2009 Lecture 26 10

function y=mergeSort(x)
n=length(x);
if n==1

y=x;
else

m=floor(n/2);
yL=mergeSort(x(1:m));
yR=mergeSort(x(m+1:n));
y=merge(yL,yR);

end

Dec 1, 2009 Lecture 26 13

How do merge sort, insertion sort, and bubble sort compare?

Insertion sort and bubble sort are similar
Both involve a series of comparisons and swaps
Both involve nested loops

Merge sort uses recursion

Dec 1, 2009 Lecture 26 14

function x = insertSort(x)
% Sort vector x in ascending order with insertion sort

n = length(x);
for i= 1:n-1

% Sort x(1:i+1) given that x(1:i) is sorted
j= i;
need2swap= x(j+1) < x(j);
while need2swap

% swap x(j+1) and x(j)
temp= x(j);
x(j)= x(j+1);
x(j+1)= temp;

j= j-1;
need2swap= j>0 && x(j+1)<x(j);

end
end

Insertion sort is more

efficient than bubble sort

on average—fewer

comparisons (Lecture 24)

Dec 1, 2009 Lecture 26 16

How do merge sort and insertion sort compare?

Insertion sort: (worst case) makes i comparisons
to insert an element in a sorted array of i
elements. For an array of length N:
1+2+…+(N-1) = N(N-1)/2, say N2 for big N

Merge sort:

Dec 1, 2009 Lecture 26 17

function y = mergeSort(x)
% x is a vector. y is a vector
% consisting of the values in x
% sorted from smallest to largest.

n = length(x);
if n==1

y = x;
else

m = floor(n/2);
yL = mergeSort(x(1:m));
yR = mergeSort(x(m+1:n));
y = merge(yL,yR);

end

All the comparisons between
vector values are done in merge

Dec 1, 2009 Lecture 26 18

function z = merge(x,y)
nx = length(x); ny = length(y);
z = zeros(1, nx+ny);
ix = 1; iy = 1; iz = 1;
while ix<=nx && iy<=ny

if x(ix) <= y(iy)
z(iz)= x(iy); ix=ix+1; iz=iz+1;

else
z(iz)= y(iy); iy=iy+1; iz=iz+1;

end
end
while ix<=nx % copy remaining x-values

z(iz)= x(ix); ix=ix+1; iz=iz+1;
end
while iy<=ny % copy remaining y-values

z(iz)= y(iy); iy=iy+1; iz=iz+1;
end

See Section Ex. 13 for

the code to count the

of coomparisons

Dec 1, 2009 Lecture 26 19

Merge sort: log2(N) “levels”; N comparisons each level

J NR CP DF LA QB KM GH E

Dec 1, 2009 Lecture 26 20

How do merge sort and insertion sort compare?

Insertion sort: (worst case) makes i comparisons
to insert an element in a sorted array of i
elements. For an array of length N:
1+2+…+(N-1) = N(N-1)/2, say N2 for big N

Merge sort: N· log2(N)

Insertion sort is done in-place; merge sort
(recursion) requires much more memory

O(N2)

O(N log2(N))

Order of
magnitude

Dec 1, 2009 Lecture 26 21

How to choose??

Depends on application
Merge sort is especially good for sorting large
data set (but watch out for memory usage)
Insertion sort is “order N2” at worst case, but
what about an average case? If the application
requires that you maintain a sorted array,
insertion sort may be a good choice

Dec 1, 2009 Lecture 26 22

Why not just use Matlab’s sort function?

Flexibility
E.g., to maintain a sorted list, just write the code for
insertion sort
E.g., sort strings or other complicated structures
Sort according to some criterion set out in a function
file

Observe that we have the comparison x(j+1)<x(j)
The comparison can be a function that returns a boolean value

Can combine different sort/search algorithms for
specific problem

Dec 1, 2009 Lecture 26 23

Expensive function evaluations

Consider the execution of a program that is dominated
by multiple calls to an expensive-to-evaluate function
(e.g., climate simulation models)

Can try to improve efficiency by dealing with the
expensive function evaluations

Time spent on evaluating a function
Time for other program tasks

Total time

Dec 1, 2009 Lecture 26 24

Dealing with expensive function evaluations

Can the function code be improved?
Can we do fewer function evaluations?
Can we pre-compute and store specific function values
so that during the main program execution the program
can just look up the values?

Consider function f(x). If there are many function calls and few
distinct values of x, can get substantial speedup
Only speeds up main program execution—it still takes time to
do the pre-computation

f(x)

x

Dec 1, 2009 Lecture 26 25

What are some issues and potential problems with the
“table look-up” strategy?

Accuracy—need a “dense
grid” to get high accuracy

significant memory
usage
If an exact x-value is not
found, need some kind of
approximation
Incur searching cost if the
x-values are not simple
indices
Feasible in high dimensions
(multiple dependent
variables)?

x f(x)
1 1.01
2 2.67
3 5.71
4 9.12
5 7.98
: :

Pre-calculate and
store these values
(e.g., in a vector H)

To be continued in this week’s lab.

Dec 1, 2009 Lecture 26 27

Back to Recursion

Merge sort

Remove all occurrences of a character from a
string

‘gc aatc gga c ’ ‘gcaatcggac’

Dec 1, 2009 Lecture 26 28

Example: removing all occurrences of a character

Can solve using iteration—check one character
(one component of the vector) at a time
Can solve using recursion

E.g., remove all the blanks in string s
Same as remove blank in s(1)

and remove blanks in s(2:length(s))

Dec 1, 2009 Lecture 26 29

function s = removeChar(c, s)
% Return string s with character c removed

if length(s)==0 % Base case: nothing to do
return

else

end

Dec 1, 2009 Lecture 26 30

function s = removeChar(c, s)
% Return string s with character c removed

if length(s)==0 % Base case: nothing to do
return

else
if s(1)~=c

else

end
end

Dec 1, 2009 Lecture 26 31

function s = removeChar(c, s)
% Return string s with character c removed

if length(s)==0 % Base case: nothing to do
return

else
if s(1)~=c
% return string is
% s(1) and remaining s with char c removed

else

end
end

Dec 1, 2009 Lecture 26 32

function s = removeChar(c, s)
% Return string s with character c removed

if length(s)==0 % Base case: nothing to do
return

else
if s(1)~=c
% return string is
% s(1) and remaining s with char c removed

else
% return string is just
% the remaining s with char c removed

end
end

Dec 1, 2009 Lecture 26 33

function s = removeChar(c, s)
% Return string s with character c removed

if length(s)==0 % Base case: nothing to do
return

else
if s(1)~=c
% return string is
% s(1) and remaining s with char c removed
s= [s(1) removeChar(c, s(2:length(s)))];

else
% return string is just
% the remaining s with char c removed

end
end

Dec 1, 2009 Lecture 26 34

function s = removeChar(c, s)
% Return string s with character c removed

if length(s)==0 % Base case: nothing to do
return

else
if s(1)~=c
% return string is
% s(1) and remaining s with char c removed
s= [s(1) removeChar(c, s(2:length(s)))];

else
% return string is just
% the remaining s with char c removed
s= removeChar(c, s(2:length(s)));

end
end

function s = removeChar(c, s)
if length(s)==0

return
else

if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs

c

_

_

c _

d _ o gs _

removeChar – 1st call

function s = removeChar(c, s)
if length(s)==0

return
else

if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs

c

_

_

c _

d _ o gs _

removeChar – 1st call

[]d

function s = removeChar(c, s)
if length(s)==0

return
else

if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs _

c _

c _

d _ o gs _

removeChar – 1st call

[]d

removeChar – 2nd call
c _

_ o gs _

[]

function s = removeChar(c, s)
if length(s)==0

return
else

if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs _

c _

c _

d _ o gs _

removeChar – 1st call

[]d

removeChar – 2nd call
c _

_ o gs _

[]

removeChar – 3rd call
c _

o gs _

[]o

function s = removeChar(c, s)
if length(s)==0

return
else

if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs _

c _

c _

d _ o gs _

removeChar – 1st call

[]d

removeChar – 2nd call
c _

_ o gs _

[]

removeChar – 3rd call
c _

o gs _

[]o

removeChar – 4th call
c _

gs _

[]

function s = removeChar(c, s)
if length(s)==0

return
else

if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs _

c _

c _

d _ o gs _

removeChar – 1st call

[]d

removeChar – 2nd call
c _

_ o gs _

[]

removeChar – 3rd call
c _

o gs _

[]o

removeChar – 4th call
c _

gs _

[]

removeChar – 5th call
c _

gs

[]g

function s = removeChar(c, s)
if length(s)==0

return
else

if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs _

c _

c _

d _ o gs _

removeChar – 1st call

[]d

removeChar – 2nd call
c _

_ o gs _

[]

removeChar – 3rd call
c _

o gs _

[]o

removeChar – 4th call
c _

gs _

[]

removeChar – 5th call
c _

gs

[]g

removeChar – 6th call
c _

s ‘’
return

function s = removeChar(c, s)
if length(s)==0

return
else

if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs _

c _

c _

d _ o gs _

removeChar – 1st call

[]d

removeChar – 2nd call
c _

_ o gs _

[]

removeChar – 3rd call
c _

o gs _

[]o

removeChar – 4th call
c _

gs _

[]

removeChar – 5th call
c _

gs

[]g

removeChar – 6th call
c _

s ‘’

re
tu

rn

‘’

function s = removeChar(c, s)
if length(s)==0

return
else

if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs _

c _

c _

d _ o gs _

removeChar – 1st call

[]d

removeChar – 2nd call
c _

_ o gs _

[]

removeChar – 3rd call
c _

o gs _

[]o

removeChar – 4th call
c _

gs _

[]

removeChar – 5th call
c _

gs

[]g

removeChar – 6th call
c _

s ‘’

return

‘’

g

function s = removeChar(c, s)
if length(s)==0

return
else

if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs _

c _

c _

d _ o gs _

removeChar – 1st call

[]d

removeChar – 2nd call
c _

_ o gs _

[]

removeChar – 3rd call
c _

o gs _

[]o

removeChar – 4th call
c _

gs _

[]

removeChar – 5th call
c _

gs

[]g

removeChar – 6th call
c _

s ‘’

return

‘’

gg

function s = removeChar(c, s)
if length(s)==0

return
else

if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs _

c _

c _

d _ o gs _

removeChar – 1st call

[]d

removeChar – 2nd call
c _

_ o gs _

[]

removeChar – 3rd call
c _

o gs _

[]o

removeChar – 4th call
c _

gs _

[]

removeChar – 5th call
c _

gs

[]g

removeChar – 6th call
c _

s ‘’

return

‘’

ggo g

function s = removeChar(c, s)
if length(s)==0

return
else

if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs _

c _

c _

d _ o gs _

removeChar – 1st call

[]d

removeChar – 2nd call
c _

_ o gs _

[]

removeChar – 3rd call
c _

o gs _

[]o

removeChar – 4th call
c _

gs _

[]

removeChar – 5th call
c _

gs

[]g

removeChar – 6th call
c _

s ‘’

re
tu

rn

‘’

ggo go g

d o g

Dec 1, 2009 Lecture 26 47

Divide-and-conquer methods also show up in
geometric situations

Chop a region up into
triangles with smaller
triangles in “areas of
interest”

Recursive mesh generation

Dec 1, 2009 Lecture 26 48

Mesh Generation

Step one in simulating flow around an airfoil is to generate
a mesh and (say) estimate velocity at each mesh point.

An area of
interest

Dec 1, 2009 Lecture 26 49

Mesh Generation in 3D

Dec 1, 2009 Lecture 26 50

Why is mesh generation a divide-&-conquer process?

Let’s draw this graphic

Dec 1, 2009 Lecture 26 51

Start with a triangle

Dec 1, 2009 Lecture 26 52

A “level-1” partition of the triangle

(obtained by connecting the midpoints of the sides of the original triangle)

Now do the same partitioning (connecting midpts) on each corner (yellow)
triangle to obtain the “level-2” partitioning

dfan
Cross-Out

dfan
Text Box
white

Dec 1, 2009 Lecture 26 53

The “level-2” partition of the triangle

Dec 1, 2009 Lecture 26 54

The “level-3” partition of the triangle

Dec 1, 2009 Lecture 26 55

The “level-4” partition of the triangle

Dec 1, 2009 Lecture 26 56

The “level-4” partition of the triangle

Dec 1, 2009 Lecture 26 57

The basic operation at each level

if the triangle is small
Don’t subdivide and just color it yellow.

else
Subdivide:
Connect the side midpoints;
color the interior triangle magenta;
Apply same process to each outer triangle.

end

Dec 1, 2009 Lecture 26 58

Draw a level-4 partition of the triangle with these vertices

Dec 1, 2009 Lecture 26 59

At the start…

Dec 1, 2009 Lecture 26 60

Recur: apply the same process on the lower left triangle

Dec 1, 2009 Lecture 26 61

Recur again

Dec 1, 2009 Lecture 26 62

… and again

The next lower left corner triangle (white) is small—no more
subdivision and just color it yellow.

Dec 1, 2009 Lecture 26 63

Now lower left corner triangle of the “level-4” partition is
done. Continue with another corner triangle

Dec 1, 2009 Lecture 26 64

… and continue

Dec 1, 2009 Lecture 26 65

Now the lower left corner triangle of the “level-3”
partition is done. Continue with another corner
triangle…

Dec 1, 2009 Lecture 26 66

Dec 1, 2009 Lecture 26 67

We’re “climbing our way out” of the deepest level of
partitioning

Dec 1, 2009 Lecture 26 68

Dec 1, 2009 Lecture 26 69

Dec 1, 2009 Lecture 26 70

Dec 1, 2009 Lecture 26 71

Dec 1, 2009 Lecture 26 72

Dec 1, 2009 Lecture 26 73

Dec 1, 2009 Lecture 26 74

Dec 1, 2009 Lecture 26 75

Eventually climb all the way out to get the final result

Dec 1, 2009 Lecture 26 76

The basic operation at each level

if the triangle is small
Don’t subdivide and just color it yellow.

else
Subdivide:
Connect the side midpoints;
color the interior triangle magenta;
Apply same process to each outer triangle.

end

Dec 1, 2009 Lecture 26 77

function MeshTriangle(x,y,L)
% x,y are 3-vectors that define the vertices of a triangle.
% Draw level-L partitioning. Assume hold is on.

if L==0
% Recursion limit reached; no more subdivision required.
fill(x,y,'y') % Color this triangle yellow

else
% Need to subdivide: determine the side midpoints; connect
% midpts to get “interior triangle”; color it magenta.

% Apply the process to the three "corner" triangles...

end

Dec 1, 2009 Lecture 26 78

function MeshTriangle(x,y,L)
% x,y are 3-vectors that define the vertices of a triangle.
% Draw level-L partitioning. Assume hold is on.

if L==0
% Recursion limit reached; no more subdivision required.
fill(x,y,'y') % Color this triangle yellow

else
% Need to subdivide: determine the side midpoints; connect
% midpts to get “interior triangle”; color it magenta.
a = [(x(1)+x(2))/2 (x(2)+x(3))/2 (x(3)+x(1))/2];
b = [(y(1)+y(2))/2 (y(2)+y(3))/2 (y(3)+y(1))/2];
fill(a,b,'m')

% Apply the process to the three "corner" triangles...

end

Dec 1, 2009 Lecture 26 79

function MeshTriangle(x,y,L)
% x,y are 3-vectors that define the vertices of a triangle.
% Draw level-L partitioning. Assume hold is on.

if L==0
% Recursion limit reached; no more subdivision required.
fill(x,y,'y') % Color this triangle yellow

else
% Need to subdivide: determine the side midpoints; connect
% midpts to get “interior triangle”; color it magenta.
a = [(x(1)+x(2))/2 (x(2)+x(3))/2 (x(3)+x(1))/2];
b = [(y(1)+y(2))/2 (y(2)+y(3))/2 (y(3)+y(1))/2];
fill(a,b,'m')

% Apply the process to the three "corner" triangles...
MeshTriangle([x(1) a(1) a(3)],[y(1) b(1) b(3)],L-1)
MeshTriangle([x(2) a(2) a(1)],[y(2) b(2) b(1)],L-1)
MeshTriangle([x(3) a(3) a(2)],[y(3) b(3) b(2)],L-1)

end

