= Previous Lecture:
= Review matrix, cell array, structure array

= Today’s Lecture:
= Working with sound files

= Review vector, graphics, struct array, cell array

= Announcement:
s P6 will be posted this aftn. Due |1/23 (Mon)

s Prelim 2 returned in lecture unless you didn’t circle your
lecture time on the exam, in which case pick it up from
CS1112 consultants (ACCEL Green Rm) after 4pm today



Reading and playing .wav files

[y, rate,nBits] = wavread(“austin.wav?)
sound(y, rate)

A wav file is for the computer to process—
software is required to play the sound.

Computing with sound in Matlab requires that we
first convert the wav format data into simple
numeric data—the job of wavread.
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Computing with sound requires digitization

= Sound is continuous; capture its essence by sampling

= Digitized sound is a vector of numbers

Time —=
Digital

outpdt ’—‘—‘—‘—‘—4—‘_'—’—,7

Time —
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Sampling rate affects the quality

If sampling not frequent enough, then the discretized
sound will not capture the essence of the continuous
sound...

Too slow

OK
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Sampling Rate

Given human perception, 20000 samples/second
is pretty good (20000Hz or 20kHz)

8,000 Hz required for speech over the
telephone

44,100 Hz required for audio CD

192,400 Hz required for HD-DVD
audio tracks
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Resolution also affects the quality

Typically, each sampled value is encoded as an 8-
bit integer in the .wav file.

Possible values: -128, -127,...,-1,0,1,...,127

Loud: -120, 90, 122, etc.

Magnitude

determines loudness

Quiet: 3, 10, -5

| 6-bit used when very high quality is required.
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wavread converts the 8-bit values to floating point values
between -1 and |

Y, rate,nBits]= wavread(“austin.wav’)
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[v,rate,nBits]=
n = length(y);

N =
54453
rate =
11025
nBits =
8

What is the play duration?

November 12, 2009

wavread

wavread(“austin.wav”);

austin.wav

encoded the sound with

54 453 8-bit numbers that
were taken at 11025 samples
per second
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wavread

Name of the
source file

[data,rate,nBits]= wavread(“austin.wav?’)

The vector of || The sampling || The
sampled sound || rate is resolution is

values is assigned to assigned to
assigned to this variable this variable
this variable
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Hearing and “seeing” the sound

[y, rate]= wavread(“austin’);
sound(y, rate)

plot(1:length(y), V) ustin Pover
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Usually playback at a 0
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See showAustin.m 4




November 12, 2009

movies.wayv

Lecture 22

11



Example: playlist

Suppose we have a set of .wav files, e.g.,

austin.wav
sp beam.wav
Sp_0z6.wav

and wish to play them in succession.
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Possible solution

playList = {"austin”®,..
"sp _beam®, ..
"Sp _0z6"};

for k=1:length(playList)
[y, rate] = wavread(playList{k});
sound(y, rate)

end
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Store the data from wav files as a struct array for
play back later

function SA = wavSegments(wnames)

% Burld a struct array SA such that

% SA(k).data stores the data of wnames{k}
% SA(k).rate stores the sampling rate of
% wav file wnames{k}

for k= 1:length(wnames)

[V, rate] = wavread(wnames{k}),;

SA(k)= struct("data”, y, "rate”, rate);
end
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function playSegments(SA)

% Play sound data stored In struct array SA.
% SA(k).data stores the k-th segment of

% sound data (from wavread)

% SA(k).rate 1s sampling rate of k-th seg.

for k= 1:length(SA)
theData= SA(K) .data;
theRate= SA(K).rate;
sound(theData, theRate)
end
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My emergency alarm clock!

The command Hint:
clock

returns a length 6 vector of these values
[year month day hour minute seconds]

Write this function:

function alarmClock(h,m,filename)
% Play wav file at h:mm
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Prelim 2

s QI: matrix trace; submatrix & min ©®

m Q2: vector of indices; string concatenation& cell

s Q3: vector & random walk ©
s Q4: 3-d array, computing indices ©®
= Q5: char array & cell array ©

array ©

Median 82

Mean 78.0; Standard Deviation 6.9

Max 100
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