= Previous Lecture:
= Review matrix, cell array, structure array

= Today’s Lecture:
= Working with sound files

= Review vector, graphics, struct array, cell array

= Announcement:
s P6 will be posted this aftn. Due |1/23 (Mon)

s Prelim 2 returned in lecture unless you didn’t circle your
lecture time on the exam, in which case pick it up from
CS1112 consultants (ACCEL Green Rm) after 4pm today

Reading and playing .wav files

[y, rate,nBits] = wavread(“austin.wav?)
sound(y, rate)

A wav file is for the computer to process—
software is required to play the sound.

Computing with sound in Matlab requires that we
first convert the wav format data into simple
numeric data—the job of wavread.

November 12, 2009 Lecture 22 2

Computing with sound requires digitization

= Sound is continuous; capture its essence by sampling

= Digitized sound is a vector of numbers

Time —=
Digital

outpdt ’—‘—‘—‘—‘—4—‘_'—’—,7

Time —

November 12, 2009 Lecture 22

Sampling rate affects the quality

If sampling not frequent enough, then the discretized
sound will not capture the essence of the continuous
sound...

Too slow

OK

November 12, 2009 Lecture 22

Sampling Rate

Given human perception, 20000 samples/second
is pretty good (20000Hz or 20kHz)

8,000 Hz required for speech over the
telephone

44,100 Hz required for audio CD

192,400 Hz required for HD-DVD
audio tracks

November 12, 2009 Lecture 22 5

Resolution also affects the quality

Typically, each sampled value is encoded as an 8-
bit integer in the .wav file.

Possible values: -128, -127,...,-1,0,1,...,127

Loud: -120, 90, 122, etc.

Magnitude

determines loudness

Quiet: 3, 10, -5

| 6-bit used when very high quality is required.

November 12, 2009 Lecture 22

wavread converts the 8-bit values to floating point values
between -1 and |

Y, rate,nBits]= wavread(“austin.wav’)

4609
3516
2734
2891
2500
1484 @am y(50000:50012)
1094
1641
1484
0000
1641
2734
. 3281

CO0OO0O0OO0O0O0O0O0O0O00O0O0O0o

1L
col®Ne)

[v,rate,nBits]=
n = length(y);

N =
54453
rate =
11025
nBits =
8

What is the play duration?

November 12, 2009

wavread

wavread(“austin.wav”);

austin.wav

encoded the sound with

54 453 8-bit numbers that
were taken at 11025 samples
per second

Lecture 22 8

wavread

Name of the
source file

[data,rate,nBits]= wavread(“austin.wav?’)

The vector of || The sampling || The
sampled sound || rate is resolution is

values is assigned to assigned to
assigned to this variable this variable
this variable

November 12, 2009 Lecture 22 9

Hearing and “seeing” the sound

[y, rate]= wavread(“austin’);
sound(y, rate)

plot(1:length(y), V) ustin Pover

0.8

0.6

0.4r

0.2+

Usually playback at a 0
rate equal to the 0z
sampling rate 04

-0.6 -

-0.8+

See showAustin.m 4

November 12, 2009

movies.wayv

Lecture 22

11

Example: playlist

Suppose we have a set of .wav files, e.g.,

austin.wav
sp beam.wav
Sp_0z6.wav

and wish to play them in succession.

November 12, 2009 Lecture 22

12

Possible solution

playList = {"austin”®,..
"sp _beam®, ..
"Sp _0z6"};

for k=1:length(playList)
[y, rate] = wavread(playList{k});
sound(y, rate)

end

November 12, 2009 Lecture 22

13

Store the data from wav files as a struct array for
play back later

function SA = wavSegments(wnames)

% Burld a struct array SA such that

% SA(k).data stores the data of wnames{k}
% SA(k).rate stores the sampling rate of
% wav file wnames{k}

for k= 1:length(wnames)

[V, rate] = wavread(wnames{k}),;

SA(k)= struct("data”, y, "rate”, rate);
end

November 12, 2009 Lecture 22

16

function playSegments(SA)

% Play sound data stored In struct array SA.
% SA(k).data stores the k-th segment of

% sound data (from wavread)

% SA(k).rate 1s sampling rate of k-th seg.

for k= 1:length(SA)
theData= SA(K) .data;
theRate= SA(K).rate;
sound(theData, theRate)
end

November 12, 2009 Lecture 22 17

My emergency alarm clock!

The command Hint:
clock

returns a length 6 vector of these values
[year month day hour minute seconds]

Write this function:

function alarmClock(h,m,filename)
% Play wav file at h:mm

November 12, 2009 Lecture 22 18

Prelim 2

s QI: matrix trace; submatrix & min ©®

m Q2: vector of indices; string concatenation& cell

s Q3: vector & random walk ©
s Q4: 3-d array, computing indices ©®
= Q5: char array & cell array ©

array ©

Median 82

Mean 78.0; Standard Deviation 6.9

Max 100

November 12, 2009

Lecture 22

25

