
Previous Lecture:
Cell arrays

Today’s Lecture:
More on cell arrays
Structures
Structure array (i.e., an array of structures)
A structure with array fields (next lecture)

Announcements:
Project 5 due Thursday at 11pm
Section this week in the computer lab (UP B7)
Review session this Sunday. Location and time TBA.
Prelim 2 next Tuesday, Nov 10th

November 3, 2009 Lecture 19 2

C{1} = ‘I’
C{2} = ‘II’
C{3} = ‘III’

:
C{2007} = ‘MMVII’

:
C{3999} = ‘MMMXMXCIX’

Example: Build a cell array of Roman numerals
for 1 to 3999

November 3, 2009 Lecture 19 3

Example

1904 = 1*1000 + 9*100 + 0*10 + 4*1

= M CM IV

= MCMIV

November 3, 2009 Lecture 19 4

1 9 0 4

MCMIV

November 3, 2009 Lecture 19 5

‘’
C
CC
CCC
CD
D
DC
DCC
DCCC
CM

‘’
X
XX
XXX
XL
L
LX
LXX
LXXX
XC

‘’
I
II
III
IV
V
VI
VII
VIII
IX

‘’
M
MM
MMM

1 9 0 4

Concatenate
entries from
these cell
arrays!

‘M’ concat. ‘CM’ concat. ‘’ concat. ‘IV’

November 3, 2009 Lecture 19 6

Ones-Place Conversion

function r = Ones2R(x)
% x is an integer that satisfies
% 0 <= x <= 9
% r is the Roman numeral with value x.

Ones = {'I', 'II', 'III', 'IV', ...
'V', 'VI','VII', 'VIII', 'IX'};

if x==0
r = '';

else
r = Ones{x};

end

November 3, 2009 Lecture 19 7

Ones-Place Conversion

function r = Ones2R(x)
% x is an integer that satisfies
% 0 <= x <= 9
% r is the Roman numeral with value x.

Ones = {'I', 'II', 'III', 'IV', ...
'V', 'VI','VII', 'VIII', 'IX'};

if x==0
r = '';

else
r = Ones{x};

end

November 3, 2009 Lecture 19 8

Similarly, we can implement these functions:

function r = Tens2R(x)
% x is an integer that satisfies
% 0 <= x <= 9
% r is the Roman numeral with value 10*x.

function r = Hund2R(x)
% x is an integer that satisfies
% 0 <= x <= 9
% r is the Roman numeral with value 100*x

function r = Thou2R(x)
% x is an integer that satisfies
% 0 <= x <=3
% r is the Roman numeral with value 1000*x

November 3, 2009 Lecture 19 9

We want all the Roman Numerals from 1 to 3999.
We have the functions Ones2R, Tens2R, Hund2R,
Thou2R.

The code to generate all the Roman Numerals will
include loops—nested loops. How many are
needed?

A: 2 B: 4 C: 6 D: 8

November 3, 2009 Lecture 19 10

for a = 0:3
for b = 0:9
for c = 0:9
for d = 0:9
n = a*1000 + b*100 + c*10 + d;
if n>0

C{n} = [Thou2R(a) Hund2R(b)...
Tens2R(c) Ones2R(d)];

end
end

end
end

end

Now we can build the Roman numeral cell array for 1,…,3999

November 3, 2009 Lecture 19 11

for a = 0:3 % possible values in thous place
for b = 0:9 % values in hundreds place
for c = 0:9 % values in tens place
for d = 0:9 % values in ones place
n = a*1000 + b*100 + c*10 + d;
if n>0

C{n} = [Thou2R(a) Hund2R(b)...
Tens2R(c) Ones2R(d)];

end
end

end
end

end

Now we can build the Roman numeral cell array for 1,…,3999

Four strings concatenated together

The nth component of cell array C

November 3, 2009 Lecture 19 12

Given a Roman Numeral, compute its value.
Assume cell array C(3999,1) available where:

C{1} = ‘I’
C{2} = ‘II’

:
C{3999} = ‘MMMCMXCIX’

The reverse conversion problem

See script RN2Int

November 3, 2009 Lecture 19 13

RN2Int.m

November 3, 2009 Lecture 19 14

A point in the plane has an x coordinate and a y
coordinate.
If a program manipulates lots of points, there will
be lots of x’s and y’s.
Anticipate clutter. Is there a way to “package”
the two coordinate values?

Data are often related

November 3, 2009 Lecture 19 15

Our Reasoning Level:

P and Q are points.
Compute the midpoint M
of the connecting line
segment.

Behind the scenes we do
this:

Mx = (Px + Qx)/2
My = (Py + Qy)/2

Packaging affects thinking

We’ve seen this before:
functions are used to
“package’’ calculations.

This packaging (a type of
abstraction) elevates the
level of our reasoning
and is critical for
problem solving.

November 3, 2009 Lecture 19 16

Simple example

p1 = struct(‘x’,3,’y’,4);

p2 = struct(‘x’,-1,’y’,7);

D = sqrt((p1.x-p2.x)^2 + (p1.y-p2.y)^2);

D is distance between two points.

p1.x, p1.y, p2.x, p2.y participating
as variables—because they are.

November 3, 2009 Lecture 19 17

Simple example

p1 = struct(‘x’,3,’y’,4);

p2 = struct(‘x’,-1,’y’,7);

D = sqrt((p1.x-p2.x)^2 + (p1.y-p2.y)^2);

D is distance between two points.

p1.x, p1.y, p2.x, p2.y participating
as variables—because they are.

p1

x y

3 4

November 3, 2009 Lecture 19 18

Creating a structure (by direct assignment)

p1 = struct(‘x’,3,’y’,4);

p1 is a structure.
The structure has two fields.
Their names are x and y.
They are assigned the values 3 and 4.

November 3, 2009 Lecture 19 19

p1

x y

3 4

p1 = struct(‘x’,3,’y’,4);

How to visualize structure p1

November 3, 2009 Lecture 19 20

p1

x y

3 4

A = p1.x + p1.y; Assigns the value 7 to A

Accessing the fields in a structure

November 3, 2009 Lecture 19 21

p1

x y

3 4

p1.x = p1.y^2; Assigns the value 16 to p1.x

Assigning to a field in a structure

November 3, 2009 Lecture 19 22

A = struct(‘name’, ‘New York’,…
‘capital’, ‘Albany’,…
‘Pop’, 15.5)

Can have combinations of string fields and
numeric fields
Arguments are given in pairs: a field name,
followed by the value

A structure can have fields of different types

November 3, 2009 Lecture 19 23

Legal/Illegal maneuvers

Q = struct(‘x’,5,’y’,6)

R = Q % Legal. R is a copy of Q

S = (Q+R)/2 % Illegal. Must access the
% fields to do calculations

P = struct(‘x’,3,’y’) % Illegal. Args must be
% in pairs (field name
% followed by field
% value)

P = struct(‘x’,3,’y’,[]) % Legal. Use [] as
P.y = 4 % place holder

November 3, 2009 Lecture 19 24

function d = dist(P,Q)
% P and Q are points (structure).
% d is the distance between them.

d = sqrt((P.x-Q.x)^2 + ...
(P.y-Q.y)^2);

Structures in functions

November 3, 2009 Lecture 19 25

Sample “Make” Function

function P = MakePoint(x,y)
% P is a point with P.x and P.y
% assigned the values x and y.

P = struct('x',x,'y',y);

Good Style—highlights the
structure’s definition

November 3, 2009 Lecture 19 26

function DrawLine(P,Q,c)
% P and Q are points (structure).
% Draws a line segment connecting
% P and Q. Color is specified by c.

plot([P.x Q.x],[P.y Q.y],c)

Another function that has structure parameters

November 3, 2009 Lecture 19 27

November 3, 2009 Lecture 19 28

s = 'rgbmcy';
for k=1:100

P = MakePoint(randn(1),randn(1));
Q = MakePoint(randn(1),randn(1));
c = s(ceil(6*rand(1)));
DrawLine(P,Q,c)

end

Generates two random points and
chooses one of six colors randomly.

Pick Up Sticks

November 3, 2009 Lecture 19 29

Structure Arrays

An array whose components are structures
All the structures must be the same (have the
same fields) in the array
Example: an array of points (point structures)

.86
y

.5
x

.91
y

1.5
x

.28
y

.4
x

1.8
y

2.5
x

P

P(1) P(2) P(3) P(4)

November 3, 2009 Lecture 19 30

P(1)

x y

.50

An Array of Points

.86

P(1) = MakePoint(.50,.86)

November 3, 2009 Lecture 19 31

P(2)

x y

-.50

An Array of Points

.86

P(2) = MakePoint(-.50,.86)

November 3, 2009 Lecture 19 32

P(3)

x y

-1.0

An Array of Points

0.0

P(3) = MakePoint(-1.0,0.0)

November 3, 2009 Lecture 19 33

P(4)

x y

-.5

An Array of Points

-.86

P(4) = MakePoint(-.50,-.86)

November 3, 2009 Lecture 19 34

P(5)

x y

.5

An Array of Points

-.86

P(5) = MakePoint(.50,-.86)

November 3, 2009 Lecture 19 35

P(6)

x y

1.0

An Array of Points

0.0

P(6) = MakePoint(1.0,0.0)

November 3, 2009 Lecture 19 36

function P = CirclePoints(n)

theta = 2*pi/n;
for k=1:n

c = cos(theta*k);
s = sin(theta*k);
P(k) = MakePoint(c,s);

end

Function returning an array of points (point structures)

