
Previous Lecture:
Cell arrays

Today’s Lecture:
More on cell arrays
Structures
Structure array (i.e., an array of structures)
A structure with array fields (next lecture)

Announcements:  
Project 5 due Thursday at 11pm
Section this week in the computer lab (UP B7)
Review session this Sunday.  Location and time TBA.
Prelim 2 next Tuesday, Nov 10th
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C{1} = ‘I’
C{2} = ‘II’
C{3} = ‘III’

:
C{2007} = ‘MMVII’

:
C{3999} = ‘MMMXMXCIX’

Example:  Build a cell array of Roman numerals
for 1 to 3999
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Example

1904 =  1*1000  +  9*100  +  0*10  +  4*1

=     M            CM                      IV 

=     MCMIV 
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1 9 0 4

MCMIV 
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‘’
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MM
MMM

1 9 0 4

Concatenate
entries from
these cell 
arrays!

‘M’ concat. ‘CM’ concat. ‘’ concat. ‘IV’
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Ones-Place Conversion

function r = Ones2R(x)
% x is an integer that satisfies
%      0 <= x <= 9
% r is the Roman numeral with value x.

Ones = {'I', 'II', 'III', 'IV', ...
'V', 'VI','VII', 'VIII', 'IX'};

if x==0
r = '';

else
r = Ones{x};

end
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Ones-Place Conversion

function r = Ones2R(x)
% x is an integer that satisfies
%      0 <= x <= 9
% r is the Roman numeral with value x.

Ones = {'I', 'II', 'III', 'IV', ...
'V', 'VI','VII', 'VIII', 'IX'};

if x==0
r = '';

else
r = Ones{x};

end
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Similarly, we can implement these functions:

function r = Tens2R(x)
% x is an integer that satisfies
%      0 <= x <= 9
% r is the Roman numeral with value 10*x.

function r = Hund2R(x)
% x is an integer that satisfies
%      0 <= x <= 9
% r is the Roman numeral with value 100*x

function r = Thou2R(x)
% x is an integer that satisfies
%      0 <= x <=3
% r is the Roman numeral with value 1000*x
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We want all the Roman Numerals from 1 to 3999.  
We have the functions Ones2R, Tens2R, Hund2R, 
Thou2R.

The code to generate all the Roman Numerals will 
include loops—nested loops.  How many are 
needed?

A: 2 B: 4 C: 6 D: 8
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for a = 0:3
for b = 0:9
for c = 0:9
for d = 0:9
n = a*1000 + b*100 + c*10 + d;
if n>0

C{n} = [Thou2R(a) Hund2R(b)...
Tens2R(c) Ones2R(d)];

end
end

end
end

end

Now we can build the Roman numeral cell array for 1,…,3999
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for a = 0:3  % possible values in thous place
for b = 0:9  % values in hundreds place
for c = 0:9  % values in tens place
for d = 0:9  % values in ones place
n = a*1000 + b*100 + c*10 + d;
if n>0

C{n} = [Thou2R(a) Hund2R(b)...
Tens2R(c) Ones2R(d)];

end
end

end
end

end

Now we can build the Roman numeral cell array for 1,…,3999

Four strings concatenated together

The nth component of cell array C
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Given a Roman Numeral, compute its value.
Assume cell array C(3999,1) available where:

C{1} = ‘I’
C{2} = ‘II’

:
C{3999} = ‘MMMCMXCIX’

The reverse conversion problem

See script RN2Int
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RN2Int.m
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A point in the plane has an x coordinate and a y 
coordinate.
If a program manipulates lots of points, there will 
be lots of x’s and y’s.
Anticipate clutter. Is there a way to “package”
the two coordinate values?

Data are often related
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Our Reasoning Level:

P and Q are points. 
Compute the midpoint M 
of the connecting line 
segment.

Behind the scenes we do 
this:

Mx = (Px + Qx)/2
My = (Py + Qy)/2

Packaging affects thinking

We’ve seen this before:  
functions are used to 
“package’’ calculations.

This packaging (a type of 
abstraction) elevates the 
level of our reasoning 
and is critical for 
problem solving.
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Simple example

p1 = struct(‘x’,3,’y’,4);

p2 = struct(‘x’,-1,’y’,7);

D = sqrt((p1.x-p2.x)^2 + (p1.y-p2.y)^2);

D is distance between two points.

p1.x, p1.y, p2.x, p2.y participating 
as variables—because they are.
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Simple example

p1 = struct(‘x’,3,’y’,4);

p2 = struct(‘x’,-1,’y’,7);

D = sqrt((p1.x-p2.x)^2 + (p1.y-p2.y)^2);

D is distance between two points.

p1.x, p1.y, p2.x, p2.y participating 
as variables—because they are.

p1

x y

3 4
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Creating a structure (by direct assignment)

p1 = struct(‘x’,3,’y’,4);

p1 is a structure.
The structure has two fields.
Their names are x and y.
They are assigned the values 3 and 4.
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p1

x y

3 4

p1 = struct(‘x’,3,’y’,4);

How to visualize structure p1
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p1

x y

3 4

A = p1.x + p1.y; Assigns the value 7 to A

Accessing the fields in a structure
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p1

x y

3 4

p1.x = p1.y^2; Assigns the value 16 to p1.x

Assigning to a field in a structure



November 3, 2009 Lecture 19 22

A = struct(‘name’, ‘New York’,…
‘capital’, ‘Albany’,…
‘Pop’, 15.5)

Can have combinations of string fields and 
numeric fields
Arguments are given in pairs:  a field name, 
followed by the value

A structure can have fields of different types
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Legal/Illegal maneuvers

Q = struct(‘x’,5,’y’,6)

R = Q        % Legal. R is a copy of Q

S = (Q+R)/2  % Illegal. Must access the
% fields to do calculations

P = struct(‘x’,3,’y’) % Illegal. Args must be
% in pairs (field name
% followed by field 
% value)

P = struct(‘x’,3,’y’,[]) % Legal. Use [] as
P.y = 4                  % place holder
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function d = dist(P,Q)
% P and Q are points (structure).
% d is the distance between them.

d = sqrt((P.x-Q.x)^2 + ...
(P.y-Q.y)^2);

Structures in functions
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Sample “Make” Function

function P = MakePoint(x,y)
% P is a point with P.x and P.y
% assigned the values x and y.

P = struct('x',x,'y',y);

Good Style—highlights the 
structure’s definition
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function DrawLine(P,Q,c)
% P and Q are points (structure).
% Draws a line segment connecting
% P and Q. Color is specified by c.

plot([P.x Q.x],[P.y Q.y],c)

Another function that has structure parameters
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s = 'rgbmcy';
for k=1:100

P = MakePoint(randn(1),randn(1));
Q = MakePoint(randn(1),randn(1));
c = s(ceil(6*rand(1)));
DrawLine(P,Q,c)

end

Generates two random points and 
chooses one of six colors  randomly.

Pick Up Sticks
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Structure Arrays

An array whose components are structures
All the structures must be the same (have the 
same fields) in the array
Example: an array of points (point structures)

.86
y

.5
x

.91
y

1.5
x

.28
y

.4
x

1.8
y

2.5
x

P

P(1) P(2) P(3) P(4)
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P(1)

x y

.50

An Array of Points

.86

P(1) = MakePoint(.50,.86)
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P(2)

x y

-.50

An Array of Points

.86

P(2) = MakePoint(-.50,.86)
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P(3)

x y

-1.0

An Array of Points

0.0

P(3) = MakePoint(-1.0,0.0)
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P(4)

x y

-.5

An Array of Points

-.86

P(4) = MakePoint(-.50,-.86)



November 3, 2009 Lecture 19 34

P(5)

x y

.5

An Array of Points

-.86

P(5) = MakePoint(.50,-.86)
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P(6)

x y

1.0

An Array of Points

0.0

P(6) = MakePoint(1.0,0.0)
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function P = CirclePoints(n)

theta = 2*pi/n;
for k=1:n

c = cos(theta*k);
s = sin(theta*k);
P(k) = MakePoint(c,s);

end

Function returning an array of points (point structures)


