
Previous Lecture:
Working with images

Today’s Lecture:
More on manipulating images

“Noise” filtering
Edge finding

Announcements:
Project 4 due tonight at 11pm

October 22, 2009 Lecture 16 4

An image as an array: values in [0..255]

150 149 152 153 152 155
151 150 153 154 153 156
153 151 155 156 155 158
154 153 156 157 156 159
156 154 158 159 158 161
157 156 159 160 159 162

0 = black
255 = white

These are integer values
Type: uint8

October 22, 2009 Lecture 16 6

Vectorized code to create a mirror image

A = imread(’LawSchool.jpg’)
[nr,nc,np] = size(A);
for c= 1:nc

B(:,c,1) = A(:,nc+1-c,1)
B(:,c,2) = A(:,nc+1-c,2)
B(:,c,3) = A(:,nc+1-c,3)

end
imwrite(B,'LawSchoolMirror.jpg')Can

improve
 effi

cienc
y by

initia
lizing

 B to
 be a

 3-d

arra
y of

the a
ppro

priat
e siz

e

October 22, 2009 Lecture 16 7

Example: produce a negative

October 22, 2009 Lecture 16 8

Problem: produce a negative

“Negative” is what we say, but all color values
are positive numbers!
Think in terms of the extremes, 0 and 255. Then
the “negative” just means the opposite side.
So 0 is the opposite of 255;

1 … 254;
5 … 250;
30 … 225;
x … 255-x

October 22, 2009 Lecture 16 9

function newIm = toNegative(im)
% newIm is the negative of image data im
% im, newIm are 3-d arrays; each component is uint8

[nr,nc,np]= size(im); % dimensions of im
newIm= zeros(nr,nc); % initialize newIm
newIm= uint8(newIm); % Type for image color values

for r= 1:nr
for c= 1:nc

for p= 1:np
newIm(r,c,p)= ___________________;

end
end

end

October 22, 2009 Lecture 16 10

function newIm = toNegative(im)
% newIm is the negative of image im
% im, newIm are 3-d arrays; each component is uint8

[nr,nc,np]= size(im); % dimensions of im
newIm= zeros(nr,nc,np); % initialize newIm
newIm= uint8(newIm); % Type for image color values

for r= 1:nr
for c= 1:nc

for p= 1:np
newIm(r,c,p)= 255 - im(r,c,p);

end
end

end

October 22, 2009 Lecture 16 11

150 149 152 153 152 155
151 150 153 154 153 156
153 2 3 156 155 158
154 2 1 157 156 159
156 154 158 159 158 161
157 156 159 160 159 162

Dirt in the image!

Note how the
“dirty pixels”
look out of place

October 22, 2009 Lecture 16 12

Clean up “noise” — median filtering

October 22, 2009 Lecture 16 13

150 149 152 153 152 155
151 150 153 154 153 156
153 ? ? 156 155 158
154 ? ? 157 156 159
156 154 158 159 158 161
157 156 159 160 159 162

Assign “typical”
neighborhood
gray values to
“dirty pixels”

What to do with the dirty pixels?

October 22, 2009 Lecture 16 14

What are “typical neighborhood gray values”?

Median

Mean radius 1 radius 2

October 22, 2009 Lecture 16 15

Median Filtering

Visit each pixel
Replace its gray value by the median of the gray
values in the “neighborhood”

October 22, 2009 Lecture 16 16

Using a radius 1 “neighborhood”

6

7

6

7

0

7

7

6

6

Before

6

7

6

7

6

7

7

6

6

After

0
6
6
6
6
7
7
7
7

median

October 22, 2009 Lecture 16 17

Visit every pixel; compute its new value.

m = 9

n = 18

for i=1:m
for j=1:n

Compute new gray value for pixel (i,j).
end

end

October 22, 2009 Lecture 16 18

i = 1

j = 1

Original:

Filtered:

Replace with the median of the values under the window.

October 22, 2009 Lecture 16 19

i = 1

j = 2

Original:

Filtered:

Replace with the median of the values under the window.

October 22, 2009 Lecture 16 20

i = 1

j = 3

Original:

Filtered:

Replace with the median of the values under the window.

October 22, 2009 Lecture 16 21

i = 1

j = n

Original:

Filtered:

Replace with the median of the values under the window.

October 22, 2009 Lecture 16 22

i = 2

j = 1

Original:

Filtered:

Replace with the median of the values under the window.

October 22, 2009 Lecture 16 23

i = 2

j = 2

Original:

Filtered:

Replace with the median of the values under the window.

October 22, 2009 Lecture 16 24

i = m

j = n

Original:

Filtered:

Replace with the median of the values under the window.

October 22, 2009 Lecture 16 25

What We Need…

(1) A function that computes the median
value in a 2-dimensional array C:

m = medVal(C)

(2) A function that builds the filtered image
by using median values of radius r
neighborhoods:

B = medFilter(A,r)

October 22, 2009 Lecture 16 26

Computing Medians

21 89 36 28 19 88 43x :

x = sort(x)

19 21 28 36 43 88 89x :

n = length(x); % n = 7
m = ceil(n/2); % m = 4
med = x(m); % med = 36

If n is even, then use : med = x(m)/2 + x(m+1)/2

October 22, 2009 Lecture 16 27

Median of a 2D Array

function med = medVal(C)
[p,q] = size(C);
x = [];
for k=1:p

x = [x C(k,:)];
end

%Compute median of x and assign to med

See medVal.m

October 22, 2009 Lecture 16 28

Back to Filtering…

m = 9

n = 18

for i=1:m
for j=1:n

Compute new gray value for pixel (i,j)
end

end

October 22, 2009 Lecture 16 29

When window is inside…

m = 9

n = 18

New gray value for pixel (7,4) =

medVal(A(6:8,3:5))

October 22, 2009 Lecture 16 30

When window is partly outside…

m = 9

n = 18

New gray value for pixel (7,1) =

medVal(A(6:8,1:2))

October 22, 2009 Lecture 16 31

m = 9

n = 18

New gray value for pixel (9,18) =

medVal(A(8:9,17:18))

When window is partly outside…

October 22, 2009 Lecture 16 32

function B = medFilter(A,r)
% B from A via median filtering
% with radius r neighborhoods.

[m,n] = size(A);
B = uint8(zeros(m,n));
for i=1:m

for j=1:n
C = pixel (i,j) neighborhood
B(i,j) = medVal(C);

end
end

October 22, 2009 Lecture 16 33

The Pixel (i,j) Neighborhood

iMin = i-r
iMax = i+r
jMin = j-r
jMax = j+r
C = A(iMin:iMax,jMin:jMax)

r = 1 r = 2

Am

n

October 22, 2009 Lecture 16 34

The Pixel (i,j) Neighborhood

iMin = max(1,i-r)
iMax = min(m,i+r)
jMin = max(1,j-r)
jMax = min(n,j+r)
C = A(iMin:iMax,jMin:jMax)

r = 1 r = 2

Am

n

October 22, 2009 Lecture 16 35

B = medianFilter(A,3)

A

October 22, 2009 Lecture 16 36

Mean Filter with radius 3

October 22, 2009 Lecture 16 37

Mean Filter with radius 10

October 22, 2009 Lecture 16 38

Mean filter fails because the mean does not capture
representative values.

150 149 152 153 152 155
151 150 153 154 153 156
153 2 3 156 155 158
154 2 1 157 156 159
156 154 158 159 158 161
157 156 159 160 159 162

85 86
87 88

mean-filtered values

October 22, 2009 Lecture 16 42

Finding Edges

October 22, 2009 Lecture 16 43

What is an Edge?

Near an edge, grayness values
change abruptly

200 200 200 200 200 200
200 200 200 200 200 100
200 200 200 200 100 100
200 200 200 100 100 100
200 200 100 100 100 100
200 100 100 100 100 100

October 22, 2009 Lecture 16 44

General plan for showing the edges in in image

Identify the “edge pixels”
Highlight the edge pixels

make edge pixels white; make everything else black

200 200 200 200 200 200
200 200 200 200 200 100
200 200 200 200 100 100
200 200 200 100 100 100
200 200 100 100 100 100
200 100 100 100 100 100

October 22, 2009 Lecture 16 45

General plan for showing the edges in in image

Identify the “edge pixels”
Highlight the edge pixels

make edge pixels white; make everything else black

200 200 200 200 200 200
200 200 200 200 200 100
200 200 200 200 100 100
200 200 200 100 100 100
200 200 100 100 100 100
200 100 100 100 100 100W H I T E

BLACK

BLACK

October 22, 2009 Lecture 16 46

The Rate-of-Change-Array

Suppose A is an image array with integer values
between 0 and 255

Let B(i,j) be the maximum value in

A(max(1,i-1):min(m,i+1),...

max(1,j-1):min(n,j+1)) - A(i,j)

Neighborhood of A(i,j)

October 22, 2009 Lecture 16 47

Rate-of-change example

59

90

58

60

56

62

65

57

81
Rate-of-change at
middle pixel is 30

Remember that we’re doing “uint8 arithmetic”!
57 – 60 is 0 in uint8

October 22, 2009 Lecture 16 48

There can be different definitions for the rate-of-change

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 90 90
1 1 1 90 90 90
1 1 90 90 90 90
1 1 90 90 90 90

0 0 0 0 0 0
0 0 0 89 89 89
0 0 89 89 0 0
0 89 89 0 0 0
0 89 0 0 0 0
0 89 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 89 89
0 0 0 89 89 0
0 0 89 89 0 0
0 0 89 0 0 0

A

Neighborhood – A(i,j) A(i,j) - Neighborhood

0 0 0 0 0 0
0 0 0 89 89 89
0 0 89 89 89 89
0 89 89 89 89 0
0 89 89 89 0 0
0 89 89 0 0 0

| Neighborhood – A(i,j) |

October 22, 2009 Lecture 16 49

function Edges(jpgIn,jpgOut,tau)
% jpgOut is the “edge diagram” of image jpgIn.
% At each pixel, if rate-of-change > tau
% then the pixel is considered to be on an edge.

A = rgb2gray(imread(jpgIn));
[m,n] = size(A);
B = uint8(zeros(m,n));
for i = 1:m

for j = 1:n

B(i,j) = ?????

end
end

Built-in function to
convert to grayscale.
Returns 2-d array.

October 22, 2009 Lecture 16 50

Recipe for rate-of-change B(i,j)

% The 3-by-3 subarray that includes
% A(i,j) and its 8 neighbors
Neighbors = A(i-1:i+1,j-1:j+1);

% Subtract A(i,j) from each entry
Diff = Neighbors – A(i,j));

% Compute largest value in each column
colMax = max(Diff);

% Compute the max of the column max’s
B(i,j) = max(colMax);

October 22, 2009 Lecture 16 51

function Edges(jpgIn,jpgOut,tau)
% jpgOut is the “edge diagram” of image jpgIn.
% At each pixel, if rate-of-change > tau
% then the pixel is considered to be on an edge.

A = rgb2gray(imread(jpgIn));
[m,n] = size(A);
B = uint8(zeros(m,n));
for i = 1:m
for j = 1:n
Neighbors = A(max(1,i-1):min(i+1,m), ...

max(1,j-1):min(j+1,n));
B(i,j) = max(max(Neighbors – A(i,j)));

end
end

October 22, 2009 Lecture 16 52

“Edge pixels” are now identified; display them with maximum brightness (255)

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 90 90
1 1 1 90 90 90
1 1 90 90 90 90
1 1 90 90 90 90

0 0 0 0 0 0
0 0 0 89 89 89
0 0 89 89 0 0
0 89 89 0 0 0
0 89 0 0 0 0
0 89 0 0 0 0

A

B(i,j)
0 0 0 0 0 0
0 0 0 255 255 255
0 0 255 255 0 0
0 255 255 0 0 0
0 255 0 0 0 0
0 255 0 0 0 0

if B(i,j) > tau
B(i,j) = 255;

end

October 22, 2009 Lecture 16 53

function Edges(jpgIn,jpgOut,tau)
% jpgOut is the “edge diagram” of image jpgIn.
% At each pixel, if rate-of-change > tau
% then the pixel is considered to be on an edge.
A = rgb2gray(imread(jpgIn));
[m,n] = size(A);
B = uint8(zeros(m,n));
for i = 1:m
for j = 1:n
Neighbors = A(max(1,i-1):min(i+1,m), ...

max(1,j-1):min(j+1,n));
B(i,j) = max(max(Neighbors – A(i,j)));
if B(i,j) > tau

B(i,j) = 255;
end

end
end

October 22, 2009 Lecture 16 54

function Edges(jpgIn,jpgOut,tau)
% jpgOut is the “edge diagram” of image jpgIn.
% At each pixel, if rate-of-change > tau
% then the pixel is considered to be on an edge.
A = rgb2gray(imread(jpgIn));
[m,n] = size(A);
B = uint8(zeros(m,n));
for i = 1:m
for j = 1:n
Neighbors = A(max(1,i-1):min(i+1,m), ...

max(1,j-1):min(j+1,n));
B(i,j) = max(max(Neighbors – A(i,j)));
if B(i,j) > tau

B(i,j) = 255;
end

end
end
imwrite(B,jpgOut,’jpg’)

October 22, 2009 Lecture 16 55

tau = 30

tau = 20

