
Previous Lecture:
Working with images

Today’s Lecture:
More on manipulating images

“Noise” filtering
Edge finding

Announcements:  
Project 4 due tonight at 11pm
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An image as an array:  values in [0..255]

150   149   152   153   152   155
151   150   153   154   153   156
153   151   155   156   155   158
154   153   156   157   156   159
156   154   158   159   158   161
157   156   159   160   159   162

0 = black
255 = white

These are integer values
Type:  uint8
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Vectorized code to create a mirror image

A = imread(’LawSchool.jpg’)
[nr,nc,np] = size(A);
for c= 1:nc

B(:,c,1) = A(:,nc+1-c,1)
B(:,c,2) = A(:,nc+1-c,2)
B(:,c,3) = A(:,nc+1-c,3)

end
imwrite(B,'LawSchoolMirror.jpg')Can 
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Example:  produce a negative
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Problem:  produce a negative

“Negative” is what we say, but all color values 
are positive numbers!
Think in terms of the extremes, 0 and 255.  Then 
the “negative” just means the opposite side.
So 0 is the opposite of 255;

1 … 254;
5 … 250;
30 … 225;
x … 255-x
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function newIm = toNegative(im)
% newIm is the negative of image data im
% im, newIm are 3-d arrays; each component is uint8

[nr,nc,np]= size(im);    % dimensions of im
newIm= zeros(nr,nc);     % initialize newIm
newIm= uint8(newIm);     % Type for image color values

for r= 1:nr
for c= 1:nc

for p= 1:np
newIm(r,c,p)= ___________________;

end
end

end
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function newIm = toNegative(im)
% newIm is the negative of image im
% im, newIm are 3-d arrays; each component is uint8

[nr,nc,np]= size(im);    % dimensions of im
newIm= zeros(nr,nc,np);  % initialize newIm
newIm= uint8(newIm);     % Type for image color values

for r= 1:nr
for c= 1:nc

for p= 1:np
newIm(r,c,p)= 255 - im(r,c,p);

end
end

end
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150   149   152   153   152   155
151   150   153   154   153   156
153     2     3   156   155   158
154     2     1   157   156   159
156   154   158   159   158   161
157   156   159   160   159   162

Dirt in the image!

Note how the
“dirty pixels”
look out of place
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Clean up “noise” — median filtering 



October 22, 2009 Lecture 16 13

150   149   152   153   152   155
151   150   153   154   153   156
153    ?     ? 156   155   158
154    ?     ? 157   156   159
156   154   158   159   158   161
157   156   159   160   159   162

Assign “typical”
neighborhood
gray values to
“dirty pixels”

What to do with the dirty pixels? 
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What are “typical neighborhood gray values”?

Median

Mean radius 1 radius 2
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Median Filtering

Visit each pixel
Replace its gray value by the median of the gray 
values in the “neighborhood”
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Using a radius 1 “neighborhood”
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Visit every pixel; compute its new value.

m = 9

n = 18

for i=1:m
for j=1:n

Compute new gray value for pixel (i,j).
end

end 



October 22, 2009 Lecture 16 18

i = 1 

j = 1 

Original: 

Filtered: 

Replace         with the median of the values under the window. 



October 22, 2009 Lecture 16 19

i = 1 

j = 2 

Original: 

Filtered: 

Replace         with the median of the values under the window. 
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i = 1 

j = 3 

Original: 

Filtered: 

Replace         with the median of the values under the window. 
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i = 1 

j = n 

Original: 

Filtered: 

Replace         with the median of the values under the window. 
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i = 2 

j = 1 

Original: 

Filtered: 

Replace         with the median of the values under the window. 
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i = 2 

j = 2 

Original: 

Filtered: 

Replace         with the median of the values under the window. 
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i = m 

j = n 

Original: 

Filtered: 

Replace         with the median of the values under the window. 
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What We Need…

(1) A function that computes the median 
value in a 2-dimensional array C:

m = medVal(C)

(2) A function that builds the filtered image 
by using median values of radius r 
neighborhoods:

B = medFilter(A,r)
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Computing Medians

21 89 36 28 19 88 43x :

x = sort(x)

19 21 28 36 43 88 89x :

n = length(x);  % n = 7
m = ceil(n/2);  % m = 4
med = x(m);     % med = 36

If n is even, then use :       med = x(m)/2 + x(m+1)/2
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Median of a 2D Array

function  med = medVal(C)
[p,q] = size(C);
x = [];
for k=1:p

x = [x C(k,:)];
end

%Compute median of x and assign to med

See  medVal.m
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Back to Filtering…

m = 9

n = 18

for i=1:m
for j=1:n

Compute new gray value for pixel (i,j)
end

end 
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When window is inside…

m = 9

n = 18

New gray value for pixel (7,4) =

medVal( A(6:8,3:5) ) 
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When window is partly outside…

m = 9

n = 18

New gray value for pixel (7,1) =

medVal( A(6:8,1:2) ) 
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m = 9

n = 18

New gray value for pixel (9,18) =

medVal( A(8:9,17:18) ) 

When window is partly outside…
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function B = medFilter(A,r) 
% B from A via median filtering 
% with radius r neighborhoods.

[m,n] = size(A);
B = uint8(zeros(m,n));
for i=1:m

for j=1:n
C = pixel (i,j) neighborhood
B(i,j) = medVal(C);

end
end 
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The Pixel (i,j)  Neighborhood 

iMin =       i-r
iMax =       i+r
jMin =       j-r
jMax =       j+r
C = A(iMin:iMax,jMin:jMax)

r = 1 r = 2

Am

n
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The Pixel (i,j)  Neighborhood 

iMin = max(1,i-r)
iMax = min(m,i+r)
jMin = max(1,j-r)
jMax = min(n,j+r)
C = A(iMin:iMax,jMin:jMax)

r = 1 r = 2

Am

n
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B = medianFilter(A,3)

A



October 22, 2009 Lecture 16 36

Mean Filter with radius 3
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Mean Filter with radius 10
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Mean filter fails because the mean does not capture 
representative values.

150   149   152   153   152   155
151   150   153   154   153   156
153     2     3   156   155   158
154     2     1   157   156   159
156   154   158   159   158   161
157   156   159   160   159   162

85 86
87 88

mean-filtered values
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Finding Edges
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What is an Edge?

Near an edge, grayness values 
change abruptly

200   200 200 200 200 200
200   200 200 200 200 100
200   200 200 200 100   100
200   200 200 100   100 100
200   200 100   100 100 100
200   100   100 100 100 100
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General plan for showing the edges in in image

Identify the “edge pixels”
Highlight the edge pixels

make edge pixels white; make everything else black

200   200 200 200 200 200
200   200 200 200 200 100
200   200 200 200 100   100
200   200 200 100   100 100
200   200 100   100 100 100
200   100   100 100 100 100



October 22, 2009 Lecture 16 45

General plan for showing the edges in in image

Identify the “edge pixels”
Highlight the edge pixels

make edge pixels white; make everything else black

200   200 200 200 200 200
200   200 200 200 200 100
200   200 200 200 100   100
200   200 200 100   100 100
200   200 100   100 100 100
200   100   100 100 100 100W H I T E

BLACK

BLACK
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The Rate-of-Change-Array

Suppose A is an image array with integer values 
between 0 and 255

Let B(i,j) be the maximum value in

A(max(1,i-1):min(m,i+1),...

max(1,j-1):min(n,j+1))     - A(i,j)

Neighborhood of A(i,j)
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Rate-of-change example

59

90

58

60

56

62

65

57

81
Rate-of-change at 
middle pixel is 30

Remember that we’re doing “uint8 arithmetic”!
57 – 60 is 0 in uint8
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There can be different definitions for the rate-of-change

1  1  1  1  1  1
1  1  1  1  1  1
1  1  1  1 90 90
1  1  1 90 90 90
1  1 90 90 90 90
1  1 90 90 90 90

0  0  0  0  0  0
0  0  0 89 89 89
0  0 89 89 0  0
0 89 89 0  0  0
0 89  0  0  0  0
0 89  0  0  0  0

0  0  0  0  0  0
0  0  0  0  0  0
0  0  0  0 89 89
0  0  0 89 89 0
0  0 89 89 0  0
0  0 89  0  0  0

A

Neighborhood – A(i,j) A(i,j) - Neighborhood

0  0  0  0  0  0
0  0  0 89 89 89
0  0 89 89 89 89
0 89 89 89 89 0
0 89 89 89 0  0
0 89 89 0  0  0

| Neighborhood – A(i,j) |
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function Edges(jpgIn,jpgOut,tau)
% jpgOut is the “edge diagram” of image jpgIn.
% At each pixel, if   rate-of-change > tau
% then the pixel is considered to be on an edge.

A = rgb2gray(imread(jpgIn));
[m,n] = size(A);
B = uint8(zeros(m,n));
for i = 1:m

for j = 1:n

B(i,j) =  ?????

end
end

Built-in function to 
convert to grayscale.  
Returns 2-d array.
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Recipe for rate-of-change  B(i,j)

% The 3-by-3 subarray that includes
% A(i,j) and its 8 neighbors
Neighbors = A(i-1:i+1,j-1:j+1);

% Subtract A(i,j) from each entry
Diff = Neighbors – A(i,j));

% Compute largest value in each column
colMax = max(Diff);

% Compute the max of the column max’s
B(i,j) = max(colMax);
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function Edges(jpgIn,jpgOut,tau)
% jpgOut is the “edge diagram” of image jpgIn.
% At each pixel, if   rate-of-change > tau
% then the pixel is considered to be on an edge.

A = rgb2gray(imread(jpgIn));
[m,n] = size(A);
B = uint8(zeros(m,n));
for i = 1:m
for j = 1:n
Neighbors = A(max(1,i-1):min(i+1,m), ...

max(1,j-1):min(j+1,n));
B(i,j) = max( max(Neighbors – A(i,j)));

end
end
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“Edge pixels” are now identified; display them with maximum brightness (255)

1   1   1   1   1   1
1   1   1   1   1   1
1   1   1   1  90  90
1   1   1  90  90 90
1   1  90  90 90 90
1   1  90  90 90 90

0   0   0   0   0   0
0   0   0  89  89 89
0   0  89  89 0   0
0  89  89 0   0   0
0  89   0   0   0   0
0  89   0   0   0   0

A

B(i,j)
0   0   0   0   0   0
0   0   0 255 255 255
0   0 255 255 0   0
0 255 255 0   0   0
0 255   0   0   0   0
0 255   0   0   0   0

if B(i,j) > tau
B(i,j) = 255;

end 
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function Edges(jpgIn,jpgOut,tau)
% jpgOut is the “edge diagram” of image jpgIn.
% At each pixel, if   rate-of-change > tau
% then the pixel is considered to be on an edge.
A = rgb2gray(imread(jpgIn));
[m,n] = size(A);
B = uint8(zeros(m,n));
for i = 1:m
for j = 1:n
Neighbors = A(max(1,i-1):min(i+1,m), ...

max(1,j-1):min(j+1,n));
B(i,j) = max( max(Neighbors – A(i,j)));
if B(i,j) > tau

B(i,j) = 255;
end

end
end
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function Edges(jpgIn,jpgOut,tau)
% jpgOut is the “edge diagram” of image jpgIn.
% At each pixel, if   rate-of-change > tau
% then the pixel is considered to be on an edge.
A = rgb2gray(imread(jpgIn));
[m,n] = size(A);
B = uint8(zeros(m,n));
for i = 1:m
for j = 1:n
Neighbors = A(max(1,i-1):min(i+1,m), ...

max(1,j-1):min(j+1,n));
B(i,j) = max( max(Neighbors – A(i,j)));
if B(i,j) > tau

B(i,j) = 255;
end

end
end
imwrite(B,jpgOut,’jpg’)
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tau = 30



tau = 20


