m Previous Lecture:
s Examples on vectors (|-d arrays)

» Today’s Lecture:
s 2-d array—matrix

x Announcements:

= Prelim | tonight, 7:30-9pm
s A-G 2 Goldwin Smith 132

« H-L = Goldwin Smith G76
s M-S Bradfield 101
 T-2Z- Goldwin Smith G64

= Fall Break: We will post a discussion exercise for next week.
On Wednesday section instructors will be in the classrooms
as usual. Attendance is optional, but the content of the

exercise is not!




A Cost/Inventory Problem

= A company has 3 factories that make 5
different products

= The cost of making a product varies from
factory to factory

= The inventory varies from factory to factory

October 8, 2009 Lecture 13



Cost Array
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The value of C(1, J) is what it costs
factory i to make product j.
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= An array is a named collection of like data organized
into rows and columns

2-d array: matrix

m A 2-d array is a table, called a matrix

= Two indices identify the position of a value in a matrix,
e.g.,

mat(r,c)
refers to component in row r, column c of matrix mat
= Array index starts at |

m Rectangular: all rows have the same #of columns
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Creating a matrix

s Built-in functions: ones, zeros, rand
s E.g., zeros(2,3) gives a 2-by-3 matrix of Os

= “Build” a matrix using square brackets, [ ], but
the dimension must match up:

= [X y] putsy to the right of x

= [X; y] putsy below x

x» [403;5 1 9] creates the matrix ~5]19

n [4 0 3; ones(I,3)] gives ——— [4fo[s

s [4 0 3; ones(3,1)] doesn’t work 111
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Function size returns the dimensions of a matrix

a[nr, nc]= size(M) % nr is #of rows,

% nc is #of columns

anr=size(M, |) % # of rows

anc=size(M, 2) % # of columns
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What will A be!?
A= [1 1]

A= [A” ones(2,1)]

A= 1 1 1 1;

E 3-by-4 matrix
E 4-by-3 matrix
'€ vector of length 12

E Error

October 8, 2009
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Example: minimum value in a matrix

function val = minlnMatrix(M)

% val is the smallest value in matrix M
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October 8, 2009

minlnMatrix.m
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Pattern for traversing a matrix M

[nr, nc] = size(M)
for r= l:nr
% At row r
for ¢= l:nc
% At column c (in row r)
%
% Do something with M(r,c) ...
end
end
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A Cost/Inventory Problem

= A company has 3 factories that make 5
different products

= The cost of making a product varies from
factory to factory

= The inventory varies from factory to factory
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Problems

A customer submits a purchase order that

is to be filled by a single factory.

|. How much would it cost a factory to fill the
order?

2. Does a factory have enough inventory to fill
the order?

3. Among the factories that can fill the order,
who can do it most cheaply!?
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Cost Array
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The value of C(1, J) is what it costs
factory i to make product j.
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Inventory Array
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The value of Inv (1, J) is the inventory in
factory i of product j.
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Purchase Order

o [ [=[=]s

The value of PO(J ) is the number of
product j’s that the customer wants
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Cost for
factory I:

1*10 + 0*36 + 12*22 + 29* 15 + 5*62
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[ [a]x]=

o |2 fo 12fao]s

Cost for = 0; %Sum of cost
factory I: for j:1'5
= S

+ C(1.3)*POQ)
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DEE0E
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[ [a]x]=

o |2 fo 12fao]s

Cost for = 0; %Sum of cost
factory 2: for j:1'5
= S

+ C(2,3)*POQ)
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DEE0E
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[ [a]x]=

70 Iﬂ

Cost for - %Sum of cost
factory i: f j:1 5
= S -+

C(r.3)*POQ)

o W

en
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Encapsulate...

function TheBill = 1Cost(1,C,PO)

% The cost when factory 1 fills
% the purchase order

nProd = length(PO);
TheBill = O;
for jJ=1:nProd
TheBill = TheBill + C(1,3)*PO(});
end
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Finding the Cheapest

S]] o
e
S]]

yed

coYV\P"‘

o (R alels] &

October 8, 2009 Lecture 13 27



Finding the Cheapest

iBest = 0= minBill :@

for 1=1:nFact
i1IBill = 1Cost(1,C,PO);
1T 1Bill < minBill
% Found an Improvement
i1Best = 1; minBill = 1Bill;
end
end
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INT — a special value that can be regarded as
positive infinity

10/0 assigns Inf o X

1+X assigns InT oy

1/x assigns O to z

< inf s always true if wis numeric

= N X< X
|l
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Inventory Considerations

What if a factory lacks the inventory to fill the
purchase order?

Such a factory should be excluded from the find-
the-cheapest computation.
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Who Can Fill the Order?
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Wanted: A True/False Function

Inv 1CanDo DO
PO

DO is "true” if factory i can fill the order.

DO is “false" if factory i cannot fill the order.
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Example: Check inventory of factory 2

53[5 [99) 34] 42

Inv

EEEED
0 [1 o az[z0s |
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Initialization

SRR

o [ s e[ e
BEEEED

o [ ==

October 8, 2009 Lecture 13

DO

34



Still True...

53[5 |99)o4] 42
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DO = DO && ( Inv(2,1) >= PO(1) )
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Still True...

SRR

o [l =[] o
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o L=l

DO = DO && ( Inv(2,2) >= PO(2) )
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Still True...
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o [0 [Bl=[

DO = DO && ( Inv(2,3) >= PO(3) )
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No Longer True...

8|5 [0 a] 42

o ([ [l o o
BEEEED

o [ [=[Bs

DO = DO && ( Inv(2,4) >= PO(4) )
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Encapsulate...

function DO = 1CanDo(1, Inv,PO)
% DO 1s true 1f factory 1 can fTill
% the purchase order. Otherwise, false

nProd = length(PO);
DO = 1

for

1:nProd
DO = DO && ( Inv(i,j) >= PO() );
end
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Encapsulate...

function DO = 1CanDo(1, Inv,PO)
% DO 1s true 1f factory 1 can fTill

% the purchase order. Otherwise, false
nProd = length(PO);

J = 1;

while j<=nProd && Inv(i,}j)>=PO(j)
J = 3+1;

end

DO =
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Encapsulate...

function DO = 1CanDo(1, Inv,PO)
% DO 1s true 1f factory 1 can fTill

% the purchase order. Otherwise, false
nProd = length(PO);

J = 1;
while j<=nProd && Inv(i,}j)>=PO(j)
J = J3+1; DO should be true when...
end [A]lJ < nProd
DO = - [B]J == nProd
[c|J > nProd
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Encapsulate...

function DO = 1CanDo(1, Inv,PO)

% DO 1s true 1f factory 1 can fTill

% the purchase order. Otherwise, false
nProd = length(PO);

J =1

while j<=nProd && Inv(i,}j)>=PO(j)
J = 3+1;

end

DO = j>nProd;
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Back To Finding the Cheapest

1IBest = O0; minBrll = 1
for 1=1:nFact

Nnf;

it 1Bill < minBill

1Best = 1; miInBi
end

i1IBill = 1Cost(1,C,PO);

% Found an Improvement

1Bill;

end
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Back To Finding the Cheapest

= 0; minBrll = Inf;
1:nFact
0

CanDo(1, Inv,PO)

Bill = 1Cost(1,C,PO);

ifT 1Bill < minBill

% Found an Improvement
iIBest = 1; minBill

end

B

end
end
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Cheapest.m
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Finding the Cheapest

c [Eelmlm]w] W
s [a ] w0
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As
compu’red computed
by iCost by iCanDo
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