m Previous Lecture:
s Examples on vectors (|-d arrays)

» Today’s Lecture:
s 2-d array—matrix

x Announcements:

= Prelim | tonight, 7:30-9pm
s A-G 2 Goldwin Smith 132

« H-L = Goldwin Smith G76
s M-S Bradfield 101
 T-2Z- Goldwin Smith G64

= Fall Break: We will post a discussion exercise for next week.
On Wednesday section instructors will be in the classrooms
as usual. Attendance is optional, but the content of the

exercise is not!

A Cost/Inventory Problem

= A company has 3 factories that make 5
different products

= The cost of making a product varies from
factory to factory

= The inventory varies from factory to factory

October 8, 2009 Lecture 13

Cost Array

DEEEE

=== ==
DEDEE

The value of C(1, J) is what it costs
factory i to make product j.

October 8, 2009 Lecture 13

C

&
= An array is a named collection of like data organized
into rows and columns

2-d array: matrix

m A 2-d array is a table, called a matrix

= Two indices identify the position of a value in a matrix,
e.g.,

mat(r,c)
refers to component in row r, column c of matrix mat
= Array index starts at |

m Rectangular: all rows have the same #of columns

October 8, 2009 Lecture 13 8

Creating a matrix

s Built-in functions: ones, zeros, rand
s E.g., zeros(2,3) gives a 2-by-3 matrix of Os

= “Build” a matrix using square brackets, [], but
the dimension must match up:

= [X y] putsy to the right of x

= [X; y] putsy below x

x» [403;5 1 9] creates the matrix ~5]19

n [4 0 3; ones(I,3)] gives ——— [4fo[s

s [4 0 3; ones(3,1)] doesn’t work 111

October 8, 2009 Lecture 13 9

Function size returns the dimensions of a matrix

a[nr, nc]= size(M) % nr is #of rows,

% nc is #of columns

anr=size(M, |) % # of rows

anc=size(M, 2) % # of columns

October 8, 2009 Lecture 13

10

What will A be!?
A= [1 1]

A= [A” ones(2,1)]

A= 1 1 1 1;

E 3-by-4 matrix
E 4-by-3 matrix
'€ vector of length 12

E Error

October 8, 2009

A A]

13

Example: minimum value in a matrix

function val = minlnMatrix(M)

% val is the smallest value in matrix M

October 8, 2009 Lecture 13 14

October 8, 2009

minlnMatrix.m

Lecture 13

15

Pattern for traversing a matrix M

[nr, nc] = size(M)
for r= l:nr
% At row r
for ¢= l:nc
% At column c (in row r)
%
% Do something with M(r,c) ...
end
end

October 8, 2009 Lecture 13

16

A Cost/Inventory Problem

= A company has 3 factories that make 5
different products

= The cost of making a product varies from
factory to factory

= The inventory varies from factory to factory

October 8, 2009 Lecture 13

17

Problems

A customer submits a purchase order that

is to be filled by a single factory.

|. How much would it cost a factory to fill the
order?

2. Does a factory have enough inventory to fill
the order?

3. Among the factories that can fill the order,
who can do it most cheaply!?

October 8, 2009 Lecture 13 18

Cost Array

DEEEE

=== ==
DEDEE

The value of C(1, J) is what it costs
factory i to make product j.

October 8, 2009 Lecture 13

19

Inventory Array

SRR

o (e[e[e
BEEEED

The value of Inv (1, J) is the inventory in
factory i of product j.

October 8, 2009 Lecture 13

20

Purchase Order

o [[=[=]s

The value of PO(J) is the number of
product j’s that the customer wants

October 8, 2009 Lecture 13

21

DEEEE

=== ==
DEDEE

o [==

Cost for
factory I:

1*10 + 0*36 + 12*22 + 29* 15 + 5*62

October 8, 2009 Lecture 13 22

DEE0E

dEEDEn
[[a]x]=

o |2 fo 12fao]s

Cost for = 0; %Sum of cost
factory I: for j:1'5
= S

+ C(1.3)*POQ)

October 8, 2009 Lecture 13 23

DEE0E

dEEDEn
[[a]x]=

o |2 fo 12fao]s

Cost for = 0; %Sum of cost
factory 2: for j:1'5
= S

+ C(2,3)*POQ)

October 8, 2009 Lecture 13 24

DEE0E

dEEDEn
[[a]x]=

70 Iﬂ

Cost for - %Sum of cost
factory i: f j:1 5
= S -+

C(r.3)*POQ)

o W

en

October 8, 2009 Lecture 13 25

Encapsulate...

function TheBill = 1Cost(1,C,PO)

% The cost when factory 1 fills
% the purchase order

nProd = length(PO);
TheBill = O;
for jJ=1:nProd
TheBill = TheBill + C(1,3)*PO(});
end

October 8, 2009 Lecture 13

26

Finding the Cheapest

S]] o
e
S]]

yed

coYV\P"‘

o (R alels] &

October 8, 2009 Lecture 13 27

Finding the Cheapest

iBest = 0= minBill :@

for 1=1:nFact
i1IBill = 1Cost(1,C,PO);
1T 1Bill < minBill
% Found an Improvement
i1Best = 1; minBill = 1Bill;
end
end

October 8, 2009 Lecture 13

28

INT — a special value that can be regarded as
positive infinity

10/0 assigns Inf o X

1+X assigns InT oy

1/x assigns O to z

< inf s always true if wis numeric

= N X< X
|l

October 8, 2009 Lecture 13

29

Inventory Considerations

What if a factory lacks the inventory to fill the
purchase order?

Such a factory should be excluded from the find-
the-cheapest computation.

October 8, 2009 Lecture 13

30

Who Can Fill the Order?

S -
oD ol
a5 a] 7] v

o [[= [

October 8, 2009 Lecture 13 31

Wanted: A True/False Function

Inv 1CanDo DO
PO

DO is "true” if factory i can fill the order.

DO is “false" if factory i cannot fill the order.

October 8, 2009 Lecture 13 32

Example: Check inventory of factory 2

53[5 [99) 34] 42

Inv

EEEED
0 [1 o az[z0s |

October 8, 2009 Lecture 13

33

Initialization

SRR

o [s e[e
BEEEED

o [==

October 8, 2009 Lecture 13

DO

34

Still True...

53[5 |99)o4] 42

o [WlE[E[EE] o
EEEED

o @l ==

DO = DO && (Inv(2,1) >= PO(1))

October 8, 2009 Lecture 13 35

Still True...

SRR

o [l =[] o
BEEEED

o L=l

DO = DO && (Inv(2,2) >= PO(2))

October 8, 2009 Lecture 13 36

Still True...

SRR

o (e[[l =[] oo
BEEEED

o [0 [Bl=[

DO = DO && (Inv(2,3) >= PO(3))

October 8, 2009 Lecture 13 37

No Longer True...

8|5 [0 a] 42

o ([[l o o
BEEEED

o [[=[Bs

DO = DO && (Inv(2,4) >= PO(4))

October 8, 2009 Lecture 13 38

Encapsulate...

function DO = 1CanDo(1, Inv,PO)
% DO 1s true 1f factory 1 can fTill
% the purchase order. Otherwise, false

nProd = length(PO);
DO = 1

for

1:nProd
DO = DO && (Inv(i,j) >= PO());
end

October 8, 2009 Lecture 13 39

Encapsulate...

function DO = 1CanDo(1, Inv,PO)
% DO 1s true 1f factory 1 can fTill

% the purchase order. Otherwise, false
nProd = length(PO);

J = 1;

while j<=nProd && Inv(i,}j)>=PO(j)
J = 3+1;

end

DO =

October 8, 2009 Lecture 13 40

Encapsulate...

function DO = 1CanDo(1, Inv,PO)
% DO 1s true 1f factory 1 can fTill

% the purchase order. Otherwise, false
nProd = length(PO);

J = 1;
while j<=nProd && Inv(i,}j)>=PO(j)
J = J3+1; DO should be true when...
end [A]lJ < nProd
DO = - [B]J == nProd
[c|J > nProd

October 8, 2009 Lecture 13 41

Encapsulate...

function DO = 1CanDo(1, Inv,PO)

% DO 1s true 1f factory 1 can fTill

% the purchase order. Otherwise, false
nProd = length(PO);

J =1

while j<=nProd && Inv(i,}j)>=PO(j)
J = 3+1;

end

DO = j>nProd;

October 8, 2009 Lecture 13 42

Back To Finding the Cheapest

1IBest = O0; minBrll = 1
for 1=1:nFact

Nnf;

it 1Bill < minBill

1Best = 1; miInBi
end

i1IBill = 1Cost(1,C,PO);

% Found an Improvement

1Bill;

end

October 8, 2009 Lecture 13

43

Back To Finding the Cheapest

= 0; minBrll = Inf;
1:nFact
0

CanDo(1, Inv,PO)

Bill = 1Cost(1,C,PO);

ifT 1Bill < minBill

% Found an Improvement
iIBest = 1; minBill

end

B

end
end

October 8, 2009

Lecture 13

44

October 8, 2009

Cheapest.m

Lecture 13

45

Finding the Cheapest

c [Eelmlm]w] W
s [a] w0
o CEERR] Tt

As
compu’red computed
by iCost by iCanDo

October 8, 2009 Lecture 13 47

