
Previous Lecture:
Examples on vectors (1-d arrays)

Today’s Lecture:
2-d array—matrix

Announcements:
Prelim 1 tonight, 7:30-9pm

A – G Goldwin Smith 132
H – L Goldwin Smith G76
M – S Bradfield 101
T – Z Goldwin Smith G64

Fall Break: We will post a discussion exercise for next week.
On Wednesday section instructors will be in the classrooms
as usual. Attendance is optional, but the content of the
exercise is not!

October 8, 2009 Lecture 13 3

A Cost/Inventory Problem

A company has 3 factories that make 5
different products
The cost of making a product varies from
factory to factory
The inventory varies from factory to factory

October 8, 2009 Lecture 13 4

Cost Array

C

10 36 22 15

12 35 20 12

13 37 21 16

66

62

59

The value of C(i,j) is what it costs
factory i to make product j.

October 8, 2009 Lecture 13 8

2-d array: matrix

An array is a named collection of like data organized
into rows and columns
A 2-d array is a table, called a matrix
Two indices identify the position of a value in a matrix,
e.g.,

mat(r,c)

refers to component in row r, column c of matrix mat
Array index starts at 1
Rectangular: all rows have the same #of columns

c

r

October 8, 2009 Lecture 13 9

Creating a matrix

Built-in functions: ones, zeros, rand
E.g., zeros(2,3) gives a 2-by-3 matrix of 0s

“Build” a matrix using square brackets, [], but
the dimension must match up:

[x y] puts y to the right of x
[x; y] puts y below x
[4 0 3; 5 1 9] creates the matrix
[4 0 3; ones(1,3)] gives
[4 0 3; ones(3,1)] doesn’t work

4 0 3

5 1 9

4 0 3

1 1 1

October 8, 2009 Lecture 13 10

Function size returns the dimensions of a matrix

[nr, nc]= size(M) % nr is #of rows,
% nc is #of columns

nr= size(M, 1) % # of rows
nc= size(M, 2) % # of columns

October 8, 2009 Lecture 13 13

A= [1 1]
A= [A’ ones(2,1)]
A= [1 1 1 1; A A]

a. 3-by-4 matrix
b. 4-by-3 matrix
c. vector of length 12
d. Error

What will A be?

A

B

C
D

October 8, 2009 Lecture 13 14

Example: minimum value in a matrix

function val = minInMatrix(M)
% val is the smallest value in matrix M

October 8, 2009 Lecture 13 15

minInMatrix.m

October 8, 2009 Lecture 13 16

Pattern for traversing a matrix M

[nr, nc] = size(M)
for r= 1:nr

% At row r
for c= 1:nc

% At column c (in row r)
%
% Do something with M(r,c) …

end
end

October 8, 2009 Lecture 13 17

A Cost/Inventory Problem

A company has 3 factories that make 5
different products
The cost of making a product varies from
factory to factory
The inventory varies from factory to factory

October 8, 2009 Lecture 13 18

Problems

A customer submits a purchase order that
is to be filled by a single factory.

1. How much would it cost a factory to fill the
order?

2. Does a factory have enough inventory to fill
the order?

3. Among the factories that can fill the order,
who can do it most cheaply?

October 8, 2009 Lecture 13 19

Cost Array

C

10 36 22 15

12 35 20 12

13 37 21 16

66

62

59

The value of C(i,j) is what it costs
factory i to make product j.

October 8, 2009 Lecture 13 20

Inventory Array

38 5 99 34

82 19 83 12Inv

51 29 21 56

42

42

87

The value of Inv(i,j) is the inventory in
factory i of product j.

October 8, 2009 Lecture 13 21

Purchase Order

The value of PO(j) is the number of
product j’s that the customer wants

1 0 12 529PO

October 8, 2009 Lecture 13 22

1 0 12 529PO

C

10 36 22 15

12 35 20 12

13 37 21 16

66

62

59

1*10 + 0*36 + 12*22 + 29* 15 + 5*62

Cost for
factory 1:

October 8, 2009 Lecture 13 23

1 0 12 529PO

C

10 36 22 15

12 35 20 12

13 37 21 16

66

62

59

Cost for
factory 1:

s = 0; %Sum of cost
for j=1:5

s = s + C(1,j)*PO(j)
end

October 8, 2009 Lecture 13 24

1 0 12 529PO

C

10 36 22 15

12 35 20 12

13 37 21 16

66

62

59

Cost for
factory 2:

s = 0; %Sum of cost
for j=1:5

s = s + C(2,j)*PO(j)
end

October 8, 2009 Lecture 13 25

1 0 12 529PO

C

10 36 22 15

12 35 20 12

13 37 21 16

66

62

59

Cost for
factory i:

s = 0; %Sum of cost
for j=1:5

s = s + C(i,j)*PO(j)
end

October 8, 2009 Lecture 13 26

function TheBill = iCost(i,C,PO)
% The cost when factory i fills
% the purchase order

nProd = length(PO);
TheBill = 0;
for j=1:nProd

TheBill = TheBill + C(i,j)*PO(j);
end

Encapsulate…

October 8, 2009 Lecture 13 27

1 0 12 529PO

C

10 36 22 15

12 35 20 12

13 37 21 16

66

62

59

Finding the Cheapest

1019

930

1040

As computed

by iCost

October 8, 2009 Lecture 13 28

iBest = 0; minBill = inf;

for i=1:nFact
iBill = iCost(i,C,PO);
if iBill < minBill

% Found an Improvement
iBest = i; minBill = iBill;

end
end

Finding the Cheapest

October 8, 2009 Lecture 13 29

inf – a special value that can be regarded as
positive infinity

x = 10/0 assigns inf to x
y = 1+x assigns inf to y
z = 1/x assigns 0 to z
w < inf is always true if w is numeric

October 8, 2009 Lecture 13 30

Inventory Considerations

What if a factory lacks the inventory to fill the
purchase order?

Such a factory should be excluded from the find-
the-cheapest computation.

October 8, 2009 Lecture 13 31

Who Can Fill the Order?

38 5 99 34

82 19 83 12Inv

51 29 21 56

42

42

87

1 0 12 529PO

Yes

No

Yes

October 8, 2009 Lecture 13 32

Wanted: A True/False Function

iCanDoInv

PO

i

DO

DO is “true” if factory i can fill the order.
DO is “false” if factory i cannot fill the order.

October 8, 2009 Lecture 13 33

Example: Check inventory of factory 2

38 5 99 34

82 19 83 12Inv

51 29 21 56

42

42

87

1 0 12 529PO

October 8, 2009 Lecture 13 34

Initialization

38 5 99 34

82 19 83 12Inv

51 29 21 56

42

42

87

1 0 12 529PO

DO 1

October 8, 2009 Lecture 13 35

Still True…

38 5 99 34

82 19 83 12Inv

51 29 21 56

42

42

87

1 0 12 529PO

DO 1

DO = DO && (Inv(2,1) >= PO(1))

October 8, 2009 Lecture 13 36

Still True…

38 5 99 34

82 19 83 12Inv

51 29 21 56

42

42

87

1 0 12 529PO

DO 1

DO = DO && (Inv(2,2) >= PO(2))

October 8, 2009 Lecture 13 37

Still True…

38 5 99 34

82 19 83 12Inv

51 29 21 56

42

42

87

1 0 12 529PO

DO 1

DO = DO && (Inv(2,3) >= PO(3))

October 8, 2009 Lecture 13 38

No Longer True…

38 5 99 34

82 19 83 12Inv

51 29 21 56

42

42

87

1 0 12 529PO

DO 0

DO = DO && (Inv(2,4) >= PO(4))

October 8, 2009 Lecture 13 39

function DO = iCanDo(i,Inv,PO)
% DO is true if factory i can fill
% the purchase order. Otherwise, false

nProd = length(PO);
DO = 1;
for j = 1:nProd

DO = DO && (Inv(i,j) >= PO(j));
end

Encapsulate…

October 8, 2009 Lecture 13 40

function DO = iCanDo(i,Inv,PO)
% DO is true if factory i can fill
% the purchase order. Otherwise, false
nProd = length(PO);
j = 1;
while j<=nProd && Inv(i,j)>=PO(j)

j = j+1;
end
DO = _______;

Encapsulate…

October 8, 2009 Lecture 13 41

function DO = iCanDo(i,Inv,PO)
% DO is true if factory i can fill
% the purchase order. Otherwise, false
nProd = length(PO);
j = 1;
while j<=nProd && Inv(i,j)>=PO(j)

j = j+1;
end
DO = _______;

Encapsulate…

DO should be true when…
• j < nProd
• j == nProd
• j > nProd

A

C
B

October 8, 2009 Lecture 13 42

function DO = iCanDo(i,Inv,PO)
% DO is true if factory i can fill
% the purchase order. Otherwise, false
nProd = length(PO);
j = 1;
while j<=nProd && Inv(i,j)>=PO(j)

j = j+1;
end
DO = j>nProd;

Encapsulate…

October 8, 2009 Lecture 13 43

iBest = 0; minBill = inf;

for i=1:nFact
iBill = iCost(i,C,PO);
if iBill < minBill

% Found an Improvement
iBest = i; minBill = iBill;

end
end

Back To Finding the Cheapest

Don’t bother with this unless

there is sufficient inventory.

October 8, 2009 Lecture 13 44

iBest = 0; minBill = inf;
for i=1:nFact

if iCanDo(i,Inv,PO)
iBill = iCost(i,C,PO);
if iBill < minBill
% Found an Improvement

iBest = i; minBill = iBill;
end

end
end

Back To Finding the Cheapest

October 8, 2009 Lecture 13 45

Cheapest.m

October 8, 2009 Lecture 13 47

1 0 12 529PO

C

10 36 22 15

12 35 20 12

13 37 21 16

66

62

59

Finding the Cheapest

1019

930

1040

As
computed
by iCost

Yes

No

Yes

As
computed
by iCanDo

