
Previous Lecture:
Examples on vectors (1-d arrays)

Today’s Lecture:
2-d array—matrix

Announcements:  
Prelim 1 tonight, 7:30-9pm

A – G Goldwin Smith 132
H – L Goldwin Smith G76
M – S Bradfield 101
T – Z Goldwin Smith G64

Fall Break:  We will post a discussion exercise for next week. 
On Wednesday section instructors will be in the classrooms 
as usual.  Attendance is optional, but the content of the 
exercise is not!   
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A Cost/Inventory Problem

A company has 3 factories that make 5 
different products
The cost of making a product varies from 
factory to factory
The inventory varies from factory to factory
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Cost Array

C

10 36 22 15

12 35 20 12

13 37 21 16

66

62

59

The value of C(i,j) is what it costs 
factory  i to make product  j.
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2-d array:  matrix

An array is a named collection of like data organized 
into rows and columns
A 2-d array is a table, called a matrix
Two indices identify the position of a value in a matrix, 
e.g.,

mat(r,c)

refers to component in row r, column c of matrix mat
Array index starts at 1
Rectangular:  all rows have the same #of columns

c

r
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Creating a matrix

Built-in functions: ones, zeros, rand
E.g.,  zeros(2,3) gives a 2-by-3 matrix of 0s

“Build” a matrix using square brackets, [ ], but 
the dimension must match up:

[x  y] puts y to the right of x
[x; y] puts y below x
[4 0 3; 5 1 9] creates the matrix
[4 0 3; ones(1,3)] gives 
[4 0 3; ones(3,1)] doesn’t work

4 0 3

5 1 9

4 0 3

1 1 1
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Function size returns the  dimensions of a matrix

[nr, nc]= size(M) % nr is #of rows, 
% nc is #of columns

nr= size(M, 1) % # of rows
nc= size(M, 2) % # of columns
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A= [1  1]
A= [A’ ones(2,1)]
A= [1  1  1  1;  A  A]

a. 3-by-4 matrix
b. 4-by-3 matrix
c. vector of length 12
d. Error

What will A be?

A

B

C
D
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Example:  minimum value in a matrix

function val = minInMatrix(M)
% val is the smallest value in matrix M
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minInMatrix.m
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Pattern for traversing a matrix M

[nr, nc] = size(M)
for r= 1:nr

% At row r
for c= 1:nc

% At column c (in row r)
%
% Do something with M(r,c) …

end
end
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A Cost/Inventory Problem

A company has 3 factories that make 5 
different products
The cost of making a product varies from 
factory to factory
The inventory varies from factory to factory
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Problems

A customer submits a purchase order that
is to be filled by a single factory.

1. How much would it cost a factory to fill the 
order?

2. Does a factory have enough inventory to fill 
the order?

3. Among the factories that can fill the order, 
who can do it most cheaply?
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Cost Array

C

10 36 22 15

12 35 20 12

13 37 21 16

66

62

59

The value of C(i,j) is what it costs 
factory  i to make product  j.
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Inventory Array

38 5 99 34

82 19 83 12Inv

51 29 21 56

42

42

87

The value of Inv(i,j) is the inventory in 
factory  i of product  j.
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Purchase Order

The value of PO(j) is the number of
product  j’s that the customer wants

1 0 12 529PO
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1 0 12 529PO

C

10 36 22 15

12 35 20 12

13 37 21 16

66

62

59

1*10 + 0*36 + 12*22 + 29* 15 + 5*62

Cost for 
factory 1:  
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1 0 12 529PO

C

10 36 22 15

12 35 20 12

13 37 21 16

66

62

59

Cost for 
factory 1:  

s = 0;  %Sum of cost
for j=1:5

s = s + C(1,j)*PO(j)
end
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1 0 12 529PO

C

10 36 22 15

12 35 20 12

13 37 21 16

66

62

59

Cost for 
factory 2:  

s = 0;  %Sum of cost
for j=1:5

s = s + C(2,j)*PO(j)
end
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1 0 12 529PO

C

10 36 22 15

12 35 20 12

13 37 21 16

66

62

59

Cost for 
factory i:  

s = 0;  %Sum of cost
for j=1:5

s = s + C(i,j)*PO(j)
end
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function TheBill = iCost(i,C,PO)
% The cost when factory i fills
% the purchase order

nProd = length(PO);
TheBill = 0;
for j=1:nProd

TheBill = TheBill + C(i,j)*PO(j);
end

Encapsulate…
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1 0 12 529PO

C

10 36 22 15

12 35 20 12

13 37 21 16

66

62

59

Finding the Cheapest

1019

930

1040

As computed 

by iCost
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iBest = 0;  minBill = inf;

for i=1:nFact
iBill = iCost(i,C,PO);
if iBill < minBill

% Found an Improvement
iBest = i; minBill = iBill;

end
end

Finding the Cheapest
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inf – a special value that can be regarded as 
positive infinity

x = 10/0 assigns inf to x
y = 1+x assigns inf to y
z = 1/x assigns 0 to z
w < inf is always true if w is numeric
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Inventory Considerations

What if a factory lacks the inventory to fill the 
purchase order?

Such a factory should be excluded from the find-
the-cheapest computation.
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Who Can Fill the Order?

38 5 99 34

82 19 83 12Inv

51 29 21 56

42

42

87

1 0 12 529PO

Yes

No

Yes
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Wanted:  A True/False Function

iCanDoInv

PO

i

DO

DO is “true” if factory i can fill the order.
DO is “false” if factory i cannot fill the order.
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Example:  Check inventory of factory 2

38 5 99 34

82 19 83 12Inv

51 29 21 56

42

42

87

1 0 12 529PO
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Initialization

38 5 99 34

82 19 83 12Inv

51 29 21 56

42

42

87

1 0 12 529PO

DO 1
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Still True…

38 5 99 34

82 19 83 12Inv

51 29 21 56

42

42

87

1 0 12 529PO

DO 1

DO = DO && ( Inv(2,1) >= PO(1) )



October 8, 2009 Lecture 13 36

Still True…

38 5 99 34

82 19 83 12Inv

51 29 21 56

42

42

87

1 0 12 529PO

DO 1

DO = DO && ( Inv(2,2) >= PO(2) )
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Still True…

38 5 99 34

82 19 83 12Inv

51 29 21 56

42

42

87

1 0 12 529PO

DO 1

DO = DO && ( Inv(2,3) >= PO(3) )
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No Longer True…

38 5 99 34

82 19 83 12Inv

51 29 21 56

42

42

87

1 0 12 529PO

DO 0

DO = DO && ( Inv(2,4) >= PO(4) )
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function  DO = iCanDo(i,Inv,PO)
% DO is true if factory i can fill
% the purchase order. Otherwise, false

nProd = length(PO);
DO = 1;
for j = 1:nProd

DO = DO && ( Inv(i,j) >= PO(j) );
end

Encapsulate…
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function  DO = iCanDo(i,Inv,PO)
% DO is true if factory i can fill
% the purchase order. Otherwise, false
nProd = length(PO);
j = 1;
while j<=nProd && Inv(i,j)>=PO(j) 

j = j+1;
end
DO = _______;

Encapsulate…
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function  DO = iCanDo(i,Inv,PO)
% DO is true if factory i can fill
% the purchase order. Otherwise, false
nProd = length(PO);
j = 1;
while j<=nProd && Inv(i,j)>=PO(j) 

j = j+1;
end
DO = _______;

Encapsulate…

DO should be true when…
• j < nProd
• j == nProd
• j > nProd

A

C
B
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function  DO = iCanDo(i,Inv,PO)
% DO is true if factory i can fill
% the purchase order. Otherwise, false
nProd = length(PO);
j = 1;
while j<=nProd && Inv(i,j)>=PO(j) 

j = j+1;
end
DO = j>nProd;

Encapsulate…
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iBest = 0; minBill = inf;

for i=1:nFact
iBill = iCost(i,C,PO);
if iBill < minBill

% Found an Improvement 
iBest = i; minBill = iBill;

end
end

Back To Finding the Cheapest

Don’t bother with this unless 

there is sufficient inventory.
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iBest = 0; minBill = inf;
for i=1:nFact

if iCanDo(i,Inv,PO)
iBill = iCost(i,C,PO);
if iBill < minBill
% Found an Improvement 

iBest = i; minBill = iBill;
end

end
end

Back To Finding the Cheapest
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Cheapest.m
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1 0 12 529PO

C

10 36 22 15

12 35 20 12

13 37 21 16

66

62

59

Finding the Cheapest

1019

930

1040

As 
computed 
by iCost

Yes

No

Yes

As 
computed 
by iCanDo


