
Algorithm Design

Lecture 8

Announcements For This Lecture

Assignment 1

• Due Friday

▪ Due before midnight

▪ Submit something…

▪ Last revision Sep. 26

• Grades posted Sunday

• Complete the Survey

▪ Must answer individually

Getting Help

• Can work on it in lab

▪ But still have prev lab

▪ Make sure you do both

• Consulting Hours

▪ But expect it to be busy

▪ First-come, first-served

• One-on-Ones still going

▪ Lots of spaces available

29/18/25 Algorithm Design

Announcements For This Lecture

Assignment 1

• Due Friday

▪ Due before midnight

▪ Submit something…

▪ Last revision Sep. 27

• Grades posted Tuesday

• Complete the Survey

▪ Must answer individually

Getting Help

• Can work on it in lab

▪ But still have prev lab

▪ Make sure you do both

• Consulting Hours

▪ But expect it to be busy

▪ First-come, first-served

• One-on-Ones still going

▪ Lots of spaces available

39/18/25 Algorithm Design

Will post Assignment 2 Saturday.

This is a handwritten assignment.

What Are Algorithms?

Algorithm

• Step-by-step instructions

▪ Not specific to a language

▪ Could be a cooking recipe

• Outline for a program

Implementation

• Program for an algorithm

▪ In a specific language

▪ What we often call coding

• The filled in outline

9/18/25 Algorithm Design 4

• Good programmers can separate the two

▪ Work on the algorithm first

▪ Implement in language second

• Why approach strings as search-cut-glue

Difficulties With Programming

Syntax Errors

• Python can’t understand you

• Examples:

▪ Forgetting a colon

▪ Not closing a parens

• Common with beginners

▪ But can quickly train out

Conceptual Errors

• Does what you say, not mean

• Examples:

▪ Forgot last char in slice

▪ Used the wrong argument

• Happens to everyone

▪ Large part of CS training

Proper algorithm design

reduces conceptual errors

9/18/25 Algorithm Design 5

Testing First Strategy

• Write the Tests First

Could be script or written by hand

• Take Small Steps

Do a little at a time; make use of placeholders

• Intersperse Programming and Testing

When you finish a step, test it immediately

• Separate Concerns

Do not move to a new step until current is done

9/18/25 Algorithm Design 6

Testing First Strategy

• Write the Tests First

Could be script or written by hand

• Take Small Steps

Do a little at a time; make use of placeholders

• Intersperse Programming and Testing

When you finish a step, test it immediately

• Separate Concerns

Do not move to a new step until current is done

9/18/25 Algorithm Design 7

Using Placeholders in Design

• Strategy: fill in definition a little at a time

• We start with a function stub

▪ Function that can be called but is unfinished

▪ Allows us to test while still working (later)

• All stubs must have a function header

▪ But the definition body might be “empty”

▪ Certainly is when you get started

9/18/25 Algorithm Design 8

A Function Stub

def last_name_first(s):

 """Returns: copy of s in form

'last-name, 'first-name'

 Precondition: s is in form 'first-

name last-name'

 with one blank between the two

names"""

 # Finish the body
“Empty”

9/18/25 Algorithm Design 9

But it Cannot Really Be Empty

def last_name_first(s):

 # Finish the body

• A function definition is only valid with a body

▪ (Single-line) comments do not count as body

▪ But doc-strings do count (part of help function)

• So you should always write in the specification

Error

9/18/25 Algorithm Design 10

An Alternative: Pass

def last_name_first(s):

 pass

• You can make the body non-empty with pass

▪ It is a command to “do nothing”

▪ Only purpose is to ensure there is a body

• You would remove it once you got started

Fine!

9/18/25 Algorithm Design 11

Ideally: Use Both

def last_name_first(s):

 """Returns: copy of s in form

'last-name, 'first-name'

 Precondition: s is in form 'first-

name last-name'

 with one blank between the two

names"""

 passNow pass is a note that is unfinished.

Can leave it there until work is done.

9/18/25 Algorithm Design 12

Outlining Your Approach

• Recall the two types of errors you will have

▪ Syntax Errors: Python can’t understand you

▪ Conceptual Errors: Does what you say, not mean

• To remove conceptual errors, plan before code

▪ Create outline of the steps to carry out

▪ Write in this outline as comments

• This outline is called pseudocode

▪ English statements of what to do

▪ But corresponds to something simple in Python

9/18/25 Algorithm Design 13

Example: Reordering a String

def last_name_first(s):

 """Returns: copy of s in form

'last-name, 'first-name'

 Precondition: s is in form 'first-

name last-name'

 with one blank between the two

names"""

 # Find the space between the

two names

 # Cut out the first name

 # Cut out the last name

 # Glue them together with a comma

9/18/25 Algorithm Design 14

Example: Reordering a String

def last_name_first(s):

 """Returns: copy of s in form

'last-name, 'first-name'

 Precondition: s is in form 'first-

name last-name'

 with one blank between the two

names"""

 end_first = s.find(' ')

 # Cut out the first name

 # Cut out the last name

 # Glue them together with a comma9/18/25 Algorithm Design 15

Example: Reordering a String

def last_name_first(s):

 """Returns: copy of s in form

'last-name, 'first-name'

 Precondition: s is in form 'first-

name last-name'

 with one blank between the two

names"""

 end_first = s.find(' ')

 first_name = s[:end_first]

 # Cut out the last name

 # Glue them together with a comma9/18/25 Algorithm Design 16

What is the Challenge?

• Pseudocode must correspond to Python

▪ Preferably implementable in one line

▪ Unhelpful: # Return the correct answer

• So what can we do?

▪ Depends on the types involved

▪ Different types have different operations

▪ You should memorize important operations

▪ Use these as building blocks

9/18/25 Algorithm Design 17

Case Study: Strings

• We can slice strings (s[a:b])

• We can glue together strings (+)

• We have a lot of string methods

▪ We can search for characters

▪ We can count the number of characters

▪ We can pad strings

▪ We can strip padding

• Sometimes, we can cast to a new type

9/18/25 Algorithm Design 18

Early Testing

• Recall: Combine programming & testing

▪ After each step we should test

▪ But it is unfinished; answer is incorrect!

• Goal: ensure intermediate results expected

▪ Take an input from your testing plan

▪ Call the function on that input

▪ Look at the results at each step

▪ Make sure they are what you expect

• Add a temporary return value

9/18/25 Algorithm Design 19

Stubbed Returns

def last_name_first(s):

 """Returns: copy of s in form

'last-name, 'first-name'

 Precondition: s is in form 'first-

name last-name'

 with one blank between the two

names"""

 end_first = s.find(' ')

 first = s[:end_first]

 # Cut out the last name

 # Glue them together with a comma

 return first # Not the

final answer

9/18/25 Algorithm Design 20

Working with Helpers

• Suppose you are unsure of a step

▪ You maybe have an idea for pseudocode

▪ But not sure if it easily converts to Python

• But you can specify what you want

▪ Specification means a new function!

▪ Create a specification stub for that function

▪ Put a call to it in the original function

• Now can lazily implement that function
9/18/25 Algorithm Design 21

Example: last_name_first

def last_name_first(s):

 """Returns: copy of

s in the form

'last-name, first-name'

Precondition: s is in

the form

'first-name last-name'

with

with one blank between

names"""

 # Cut out the first

name

 # Cut out the last name

 # Glue together with

comma

 # Return the result

9/18/25 Algorithm Design 22

Example: last_name_first

def last_name_first(s):

 """Returns: copy of

s in the form

'last-name, first-name'

Precondition: s is in

the form

'first-name last-name'

with

with one blank between

names""”

 first =

first_name(s)

 # Cut out the last name

 # Glue together with

comma

 return first # Stub

def first_name(s):

 """Returns: first

name in s

 Precondition: s is

in the form

 'first-name last-

name' with

 one blank between

names"""

 pass

9/18/25 Algorithm Design 23

Example: last_name_first

def last_name_first(s):

 """Returns: copy of

s in the form

'last-name, first-name'

Precondition: s is in

the form

'first-name last-name'

with

with one blank between

names""”

 first =

first_name(s)

 # Cut out the last name

 # Glue together with

comma

 return first # Stub

def first_name(s):

 """Returns: first

name in s

 Precondition: s is

in the form

 'first-name last-

name' with

 one blank between

names"""

 end = s.find(' ')

 return s[:end]

9/18/25 Algorithm Design 24

Concept of Top Down Design

• Function specification is given to you

▪ This cannot change at all

▪ Otherwise, you break the team

• But you break it up into little problems

▪ Each naturally its own function

▪ YOU design the specification for each

▪ Implement and test each one

• Complete before the main function
9/18/25 Algorithm Design 25

Testing and Top Down Design

def test_first_name():

 """Test procedure for

first_name(n)"""

 result = name.first_name('Walker

White')

 introcs.assert_equals('Walker',

result)

def test_last_name_first():

 """Test procedure for

last_name_first(n)"""

 result =

name.last_name_first('Walker White')

 introcs.assert_equals('White,

Walker', result)

9/18/25 Algorithm Design 26

A Word of Warning

• Do not go overboard with this technique

▪ Do not want a lot of one line functions

▪ Can make code harder to read in extreme

• Do it if the code is too long

▪ I personally have a one page rule

▪ If more than that, turn part into a function

• Do it if you are repeating yourself a lot

▪ If you see the same code over and over

▪ Replace that code with a single function call

9/18/25 Algorithm Design 27

Exercise: Anglicizing an Integer

• anglicize(1) is “one”

• anglicize(15) is “fifteen”

• anglicize(123) is “one hundred twenty three”

• anglicize(10570) is “ten thousand five hundred

 def anglicize(n):

 """Returns: the anglicization of

int n.

 Precondition: 0 < n < 1,000,000"""

 pass # ???

 9/18/25 Algorithm Design 28

Exercise: Anglicizing an Integer

def anglicize(n):

 """Returns: the anglicization of int

n.

 Precondition: 0 < n < 1,000,000"""

 # if < 1000, provide an answer

 # if > 1000, break into hundreds,

thousands parts

 # use the < 1000 answer for

each part , and glue

 # together with "thousands" in

between

 # return the result

9/18/25 Algorithm Design 29

Exercise: Anglicizing an Integer

def anglicize(n):

 """Returns: the anglicization of int

n.

 Precondition: 0 < n < 1,000,000"""

 if n < 1000: # no

thousands place

 return anglicize1000(n)

 elif n % 1000 == 0: # no hundreds,

only thousands

 return anglicize1000(n/1000) +

' thousand'

 else: # mix

the two

 return (anglicize1000(n/1000) +

' thousand '+

 anglicize1000(n))

9/18/25 Algorithm Design 30

Exercise: Anglicizing an Integer

def anglicize(n):

 """Returns: the anglicization of int

n.

 Precondition: 0 < n < 1,000,000"""

 if n < 1000: # no

thousands place

 return anglicize1000(n)

 elif n % 1000 == 0: # no hundreds,

only thousands

 return anglicize1000(n/1000) +

' thousand'

 else: # mix

the two

 return (anglicize1000(n/1000) +

' thousand '+

 anglicize1000(n))

9/18/25 Algorithm Design 31

Now implement this.

See
anglicize.py

	Slide 1: Algorithm Design
	Slide 2: Announcements For This Lecture
	Slide 3: Announcements For This Lecture
	Slide 4: What Are Algorithms?
	Slide 5: Difficulties With Programming
	Slide 6: Testing First Strategy
	Slide 7: Testing First Strategy
	Slide 8: Using Placeholders in Design
	Slide 9: A Function Stub
	Slide 10: But it Cannot Really Be Empty
	Slide 11: An Alternative: Pass
	Slide 12: Ideally: Use Both
	Slide 13: Outlining Your Approach
	Slide 14: Example: Reordering a String
	Slide 15: Example: Reordering a String
	Slide 16: Example: Reordering a String
	Slide 17: What is the Challenge?
	Slide 18: Case Study: Strings
	Slide 19: Early Testing
	Slide 20: Stubbed Returns
	Slide 21: Working with Helpers
	Slide 22: Example: last_name_first
	Slide 23: Example: last_name_first
	Slide 24: Example: last_name_first
	Slide 25: Concept of Top Down Design
	Slide 26: Testing and Top Down Design
	Slide 27: A Word of Warning
	Slide 28: Exercise: Anglicizing an Integer
	Slide 29: Exercise: Anglicizing an Integer
	Slide 30: Exercise: Anglicizing an Integer
	Slide 31: Exercise: Anglicizing an Integer

