Lecture 7/

Conditionals &
Control Flow

Announcements For This Lecture

Assignment 1 Partners

* Should be workingonit ¢ You must pair in CMS

= Have covered everything « Go into the submission

= Look at lab for more help = Request your partner
* Due Friday at mid. = Other person accepts
* Time in lab Thu/Fri o
Al Quiz

= But will not be common

* One-on-Ones ongoing * Sent out several e-mails
= Lots of spaces available ° Wlll Starting dropping

9/16/25 Conditionals & Program Flow

Testing last name first(n)

test procedure Call function
def test last name first(): on test input
"""Test procedure for last n irst(n)™""
result = name.last name first (' Compare to
introcs.assert equals ('White, expected output
result)
result = name.last name first('Walker
White')
introcs.assert | Call test procedure [ker',
result) to activate the test

Script code

test last name first()

9/16/25 Conditionals & Program Flow
print ('Module name passe% 2T1 Tests.’)

Types of Testing

Black Box Testing White Box Testing

* Function 1s “opaque” * Function 1s “transparent”

= Test looks at what 1t does = Tests/debugging takes

= Fruitful: what it returns place inside of function

* Procedure: what changes = Focuses on where error is
» Example: Unit tests « Example: Use of print
e Problems: * Problems:

= Are the tests everything? " Much harder to do

= What caused the error? * Must remove when done

9/16/25 Conditionals & Program Flow

Types of Testing

Black Box Testing White Box Testing
* Function 1s “opaque” * Function 1s “transparent”
B Tact TAaAla at xxrdant 1t dOCS n . — 2 g

Can find the
bug location [QEE
) in function [Sas

WOI‘kS on s n

e Problems: * Problems:
= Are the tests everything? * Much harder to do
= What caused the error? * Must remove when done

9/16/25 Conditionals & Program Flow

Finding the Error

 Unit tests cannot find the source of an error

 Idea: “Visualize” the program with print statements
def last name first(n):

"""Returns: copy of n 1n form 'last-
name, first—name' v

end first _/p/;*///f]%ﬁnvadMﬂeaﬁm'J

= @ 1L— L LI\ A \

print (end first) L each assignment

first = n[:end

\
Optional: Annotate
value to make it
casier to identify P

print ('last 1s '4+str (last))

print ('first 1s '+s

last = nlend first

9/16/25 return 1as tCenlitonald & Hropranmdiow

How to Use the Results

* (Goal of white box testing 1s error location
= Want to identify the exact line with the error
* Then you look ‘real hard’ at the line to find error

= What you are doing in lab next week

» But sitmilar approach to black box testing

= At each line you have expected print result
= Compare 1t to the received print result

= Line before first mistake is /ikely the error

9/16/25 Conditionals & Program Flow

Warning About Print Statements

* Must remove them when you are done
= Not part of the specification (violation)
= Slow everything down unnecessarily
= App Store will reject an app with prints
* But you might want them again later
" Solution: “comment them out™

" You can always uncomment later

9/16/25 Conditionals & Program Flow

Structure vs. Flow

Program Structure Program Flow
* Order code is presented * Order code 1s executed
= Order statements are listed = Not the same as structure
= Inside/outside of function = Some statements duplicated
= Will see other ways... = Some statements skipped
 Defines possibilities over ¢ Defines what happens in a
multiple executions single execution

Have already seen this

difference with functions

9/16/25 Conditionals & Program Flow 9

Structure vs. Flow: Example

Program Structure Program Flow
def fool() : > python foo.py
print ('Hello') '"Hello Statement
Statement] "Hello|l executed 3x

listed once ‘Hello!

Script Code
foo ()

Bugs occur when flow does

foo () not match expectations
fool()

9/16/25 Conditionals & Program Flow 10

Conditionals: If-Statements

Format Example
if expression : # Put x in z if it
statement 1s positive
| 1f x > 0:
statement z = x
Indent
Execution:

If expression 1s True, execute all statements indented underneath

9/16/25 Conditionals & Program Flow 11

Python Tutor Example

1
2
3 ifx=>0

4 print('Hello")
5

b

print('World")

Double click the tab to change name, press enter when done.

Visualize | | Execute Code | Edit Code

9/16/25 Conditionals & Program Flow

12

Conditionals: If-Else-Statements

Format Example
1f expression : # Put max of x, vy
‘ statement in z
| 1f x > y:

else:

Z = X

statement

‘ | else:

z =Y

Execution:
If expression 1s True, execute all statements indented under 1f.

If expression 1s False, execute all statements indented under else.

9/16/25 Conditionals & Program Flow

13

Python Tutor Example

if x>0
print({'Hello")
else:
print(’ Good-bye")

0o~ h LN B WM

print("World")

Double click the tab to change name, press enter when done.

Visualize | | Execute Code | Edit Code

9/16/25 Conditionals & Program Flow

14

Conditionals: “Control Flow” Statements

| b i Branch Point:;
1f b : | Evaluate & Choose
‘ sl # S
statement Y
S I—[Statement: Execute]
e 3
4)
i £ 5 - Flow
<7 s S Program only
Le takes one path
lse: each execution
S
s2

9/16/25 Conditionals & Program Flow 15
3$3

Program Flow and Call Frames

def max(x,y): max (0, 3):
"""Returns:
Ma x Of X, yn oy max
| i SlmPle X 0
1malementatlon
| if x > vy: y| 3
2 return x
3 Frame sequence
depends on flow

9/16/25 Conditionals & Program Flow

Program Flow and Call Frames

def max(x,vVy):

max of x, vy

"WITReturns:

wiyvw

max (0, 3):
max 3

X 0

Y 3

simple
imalementation
1 if x > vy
2 return x
3

Frame sequence

depends on flow

9/16/25

[Skips line 2]

Conditionals & Program Flow

17

Program Flow and Call Frames

def max(x,vVy):

max of x, vy

"WITReturns:

wiyvw

max (0, 3):

max

RETURN

3

simple
imalementation
1 if x > vy
2 return x
3

Frame sequence

depends on flow

9/16/25

[Skips line 2]

Conditionals & Program Flow

18

Program Flow vs. Local Variables

def max(x,vy): e max(3,0):

"""Returns: max
max
Of X, y"""
swap X, Vy X 3 Y 0
put the
larger 1n vy
| if x > vy
2 temp = X
3 X =Y Swaps max
4 y = temp Into var y
5 return vy

9/16/25 Conditionals & Program Flow

Program Flow vs. Local Variables

def max(x,vy): e max(3,0):

"""Returns: max
max
Of X, y"""
swap X, Vy X 3 Y 0
put the
larger 1n vy
| if x > vy
2 temp = X
3 X =Y Swaps max
4 y = temp Into var y
5 return vy

9/16/25 Conditionals & Program Flow

Program Flow vs. Local Variables

"""Returns: max
max 3
Of X, y"""
swap X, Vy X 3 Y 0
put the
larger 1n vy temp 3
| if x > vy
2 temp = X
3 X =Y Swaps max
4 y = temp into var y
S return vy

9/16/25 Conditionals & Program Flow 21

Program Flow vs. Local Variables

"""Returns: max
max 4
Of X, y"""
swap X, Vy X 0 Y 0
put the
larger 1n vy temp 3
| if x > vy
2 temp = X
3 X =Y Swaps max
4 y = temp into var y

S return vy
9/16/25 Conditionals & Program Flow 22

Program Flow vs. Local Variables

"""Returns: max
max S
Of X, y"""
swap X, Vy X 0 Y 3
put the
larger 1n vy temp 3
| if x > vy
2 temp = X
3 X =Y Swaps max
4 y = temp into var y

S return vy
9/16/25 Conditionals & Program Flow 23

Program Flow vs. Local Variables

"""Returns: max
max
Of X, y"""
swap X, Vy X 0 Y 3
put the
larger 1n vy temp 3
1 if x > vy: RETURN| 3
2 temp = X
3 X =Y Swaps max
4 y = temp Into var y
5 return vy

9/16/25 Conditionals & Program Flow

24

Program Flow vs. Local Variables

def max(x,y): e Value ofmax (3,0)?
"""Returns: max
wiivw A: 3
of X, Vy
B: 0
¥ swap X, V
put the C: Error!
larger in vy D: I do not know
| if x > vy
2 temp = X
3 X =y
4 v)= temp
5 return temp

9/16/25 Conditionals & Program Flow

Program Flow vs. Local Variables

def max (x,y): e Value ofmax (3,0)?

""MReturns: max

Of X y" mwiu A: 3 CORRECT
B: 0

swap x, Yy

put the C: Error!
larger in vy D: I do not know
1 if x > y: . .
o) temp = x * Local variables last until
3 x = vy " They are deleted or
4 v= temp = End of the function

 Even if defined inside 1 f

5 return temp
9/16/25 Conditionals & Program Flow 26

Program Flow vs. Local Variables

def max(x,y): e Value ofmax (0, 3)?
"""Returns: max
wiivw A: 3
of X, Vy
B: 0
¥ swap X, V
put the C: Error!
larger in vy D: I do not know
| if x > vy
2 temp = X
3 X =y
4 v)= temp
5 return temp

9/16/25 Conditionals & Program Flow

Program Flow vs. Local Variables

def max(x,y): e Value ofmax (0, 3)?
""MReturns: max
mwiww A: 3
of x, Vv
B: 0
¥ swap X, V
put the C: Error! CORRECT
larger in vy D: I do not know
1 if x > vy . .
7 temp = x e Variable existence
3 % = vy depends on flow
4 V)= temp * Understanding flow
1s important in testing
5 return temp

9/16/25 Conditionals & Program Flow

Testing and Code Coverage

» Typically, tests are written from specification
= This 1s because they should be written first

" You run these tests while you implement

» But sometimes tests leverage code structure
= You know the control-flow branches
= You want to make sure each branch 1s correct

= So you explicitly have a test for each branch

» This 1s called code coverage

9/16/25 Conditionals & Program Flow

29

Which Way is Correct?

» Code coverage requires knowing code

" So 1t must be done after implementation
= But best practice 1s to write tests first

e Do them BOTH

= Write tests from the specification

* Implement the function while testing

" Go back and add tests for full coverage
= [deally this does not require adding tests

9/16/25 Conditionals & Program Flow

30

Recall: Debugging

 Unit tests cannot find the source of an error

 Idea: “Visualize” the program with print statements
def last name first(n):

9/16/25

name, first-name' """

"""Returns: copy of n 1n form 'last-

= @ 1L— L LI\ A \

print (end first) L each assignment

first = nl:end first]

end first _,p/;*///f]%ﬂnvaddﬂeaﬂm'J

print ('first 1s '+st:

Called watches
last = nlend first+ir=%

print ('last 1s '4+str (last))
return 1as tCenlitonald & Hropranmdiow

31

Now Have a Different Challege

Put max of x, v e« What was executed?

in z * The i f -statement?
print ('before * Or the else-statement?
if") « More print statements
1f x > y: = Trace program flow
print ('if = Verify flow i1s correct
x>v"')
else:
ﬁégsj‘nt ('else X<:c¥di'ﬁozua1s&1)rogram Flow 32

Z =Y

Watches vs. Traces

Watch Trace
* Visualization tool * Visualization tool
= Often print/log = Often print/log
statement statement
= May have IDE support = May have IDE support
* Looks at variable value < Looks at program flow
= Anywhere it can change = Anywhere it can change
= Often after assignment = Before/after control

9/16/25 Conditionals & Program Flow 33

Traces and Functions

print ('before
1f'")
if x > vy

print('%F
x>y ") < L Watches } [Traces }

z =Y
print (z

Example: flow.py

)

<€

else:

<€

print ('else x<=y')

7 =
9/16/25 . Conditionals & Program Flow 34
print (z)

Conditionals: If-Elif-Else-Statements

Format

Example

1f expression
statement

elif expression :

‘ statement

else:
‘ statement

9/16/25

Put max of x, v,
z 1n w

| 1f x > yv and x >

‘ w = X
elif y > z:
| R
else:
W = Z

Conditionals & Program Flow

35

Conditionals: If-Elif-Else-Statements

Format

Notes on Use

1f expression

elif expression

statement

statement

else:

9/16/25

statement

e No limit on numberofelif

= Can have as many as want
= Must be between 1 f, else

* The else 1s always optional
= if-elif by itselfis fine
* Booleans checked in order

= Once 1t finds first True,
skips over all others

= o]1se means all are false

Conditionals & Program Flow 36

Python Tutor Example

H

S W oo~ N

if x>0
print('Hello")

elif x < @:
print('Whatever')

else:
print('Good-bye')

print('World")

Double click the tab to change name, press enter when done.

Visualize | Execute Code | Edit Code

9/16/25

Conditionals & Program Flow

37

Conditional Expressions

Format Example

el if bexp else e2 # Put max of x,
vy 1n z

* el and e2 are any expression
. . Z S\ x if x >/
* bexp 1s a boolean expression Y
else v
. .. oy _
This 1s an expression! expression,]

= Evaluates to el 1f bexp not statement
True

= Evaluates to e2 if bexp

False

9/16/25 Conditionals & Program Flow

38

	Slide 1: Conditionals & Control Flow
	Slide 2: Announcements For This Lecture
	Slide 3: Testing last_name_first(n)
	Slide 4: Types of Testing
	Slide 5: Types of Testing
	Slide 6: Finding the Error
	Slide 7: How to Use the Results
	Slide 8: Warning About Print Statements
	Slide 9: Structure vs. Flow
	Slide 10: Structure vs. Flow: Example
	Slide 11: Conditionals: If-Statements
	Slide 12: Python Tutor Example
	Slide 13: Conditionals: If-Else-Statements
	Slide 14: Python Tutor Example
	Slide 15: Conditionals: “Control Flow” Statements
	Slide 16: Program Flow and Call Frames
	Slide 17: Program Flow and Call Frames
	Slide 18: Program Flow and Call Frames
	Slide 19: Program Flow vs. Local Variables
	Slide 20: Program Flow vs. Local Variables
	Slide 21: Program Flow vs. Local Variables
	Slide 22: Program Flow vs. Local Variables
	Slide 23: Program Flow vs. Local Variables
	Slide 24: Program Flow vs. Local Variables
	Slide 25: Program Flow vs. Local Variables
	Slide 26: Program Flow vs. Local Variables
	Slide 27: Program Flow vs. Local Variables
	Slide 28: Program Flow vs. Local Variables
	Slide 29: Testing and Code Coverage
	Slide 30: Which Way is Correct?
	Slide 31: Recall: Debugging
	Slide 32: Now Have a Different Challege
	Slide 33: Watches vs. Traces
	Slide 34: Traces and Functions
	Slide 35: Conditionals: If-Elif-Else-Statements
	Slide 36: Conditionals: If-Elif-Else-Statements
	Slide 37: Python Tutor Example
	Slide 38: Conditional Expressions

