
Conditionals &

Control Flow

Lecture 7

Announcements For This Lecture

Assignment 1

• Should be working on it

▪ Have covered everything

▪ Look at lab for more help

• Due Friday at mid.

▪ Time in lab Thu/Fri

▪ But will not be common

• One-on-Ones ongoing

▪ Lots of spaces available

Partners

• You must pair in CMS

• Go into the submission

▪ Request your partner

▪ Other person accepts

• Sent out several e-mails

• Will starting dropping

29/16/25 Conditionals & Program Flow

AI Quiz

Testing last_name_first(n)

test procedure

def test_last_name_first():

 """Test procedure for last_name_first(n)"""

 result = name.last_name_first('Walker White')

 introcs.assert_equals('White, Walker',

result)

 result = name.last_name_first('Walker

White')

 introcs.assert_equals('White, Walker',

result)

Script code

test_last_name_first()

print('Module name passed all tests.’)
9/16/25 Conditionals & Program Flow 3

Call function

on test input

Compare to

expected output

Call test procedure

to activate the test

Types of Testing

Black Box Testing

• Function is “opaque”

▪ Test looks at what it does

▪ Fruitful: what it returns

▪ Procedure: what changes

• Example: Unit tests

• Problems:

▪ Are the tests everything?

▪ What caused the error?

White Box Testing

• Function is “transparent”

▪ Tests/debugging takes

place inside of function

▪ Focuses on where error is

• Example: Use of print

• Problems:

▪ Much harder to do

▪ Must remove when done

9/16/25 Conditionals & Program Flow 4

Types of Testing

Black Box Testing

• Function is “opaque”

▪ Test looks at what it does

▪ Fruitful: what it returns

▪ Procedure: what changes

• Example: Unit tests

• Problems:

▪ Are the tests everything?

▪ What caused the error?

White Box Testing

• Function is “transparent”

▪ Tests/debugging takes

place inside of function

▪ Focuses on where error is

• Example: Use of print

• Problems:

▪ Much harder to do

▪ Must remove when done

Works on

functions you

did not define

Can find the

bug location

in function

9/16/25 Conditionals & Program Flow 5

Finding the Error

• Unit tests cannot find the source of an error

• Idea: “Visualize” the program with print statements

def last_name_first(n):

 """Returns: copy of n in form 'last-

name, first-name' """

 end_first = n.find(' ')

 print(end_first)

 first = n[:end_first]

 print('first is '+str(first))

 last = n[end_first+1:]

 print('last is '+str(last))

 return last+', '+first9/16/25 Conditionals & Program Flow 6

Print variable after

each assignment

Optional: Annotate

value to make it

easier to identify

How to Use the Results

• Goal of white box testing is error location

▪ Want to identify the exact line with the error

▪ Then you look ‘real hard’ at the line to find error

▪ What you are doing in lab next week

• But similar approach to black box testing

▪ At each line you have expected print result

▪ Compare it to the received print result

▪ Line before first mistake is likely the error

9/16/25 Conditionals & Program Flow 7

Warning About Print Statements

• Must remove them when you are done

▪ Not part of the specification (violation)

▪ Slow everything down unnecessarily

▪ App Store will reject an app with prints

• But you might want them again later

▪ Solution: “comment them out”

▪ You can always uncomment later

9/16/25 Conditionals & Program Flow 8

Structure vs. Flow

Program Structure

• Order code is presented

▪ Order statements are listed

▪ Inside/outside of function

▪ Will see other ways…

• Defines possibilities over

multiple executions

Program Flow

• Order code is executed

▪ Not the same as structure

▪ Some statements duplicated

▪ Some statements skipped

• Defines what happens in a

single execution

9/16/25 Conditionals & Program Flow 9

Have already seen this

difference with functions

Structure vs. Flow: Example

Program Structure

def foo():

 print('Hello')

Script Code

foo()

foo()

foo()

Program Flow

> python foo.py

'Hello'

'Hello'

'Hello'

9/16/25 Conditionals & Program Flow 10

Statement

listed once

Statement

executed 3x

Bugs occur when flow does

not match expectations

Conditionals: If-Statements

Format

if expression :

 statement

 …

 statement

Example

 # Put x in z if it

is positive

 if x > 0:

 z = x

9/16/25 Conditionals & Program Flow 11

Execution:

If expression is True, execute all statements indented underneath

Indent

Python Tutor Example

9/16/25 Conditionals & Program Flow 12

Conditionals: If-Else-Statements

Format

if expression :

 statement

 …

else:

 statement

 …

Example

 # Put max of x, y

in z

 if x > y:

 z = x

 else:

 z = y

9/16/25 Conditionals & Program Flow 13

Execution:

If expression is True, execute all statements indented under if.

If expression is False, execute all statements indented under else.

Python Tutor Example

9/16/25 Conditionals & Program Flow 14

Conditionals: “Control Flow” Statements

if b :

 s1 #

statement

 s3

 if b :

 s1

 else:

 s2

 s3
9/16/25 Conditionals & Program Flow 15

s

1

s

3

s

2

b

s

1

s

3

b Branch Point:

Evaluate & Choose

Statement: Execute

Flow
Program only

takes one path

each execution

Program Flow and Call Frames

def max(x,y):

 """Returns:

max of x, y"""

 # simple

implementation

1 if x > y:

2 return x

3 return y

max(0,3):

9/16/25 Conditionals & Program Flow 16

max 1

x 0

y 3

Frame sequence

depends on flow

Program Flow and Call Frames

def max(x,y):

 """Returns:

max of x, y"""

 # simple

implementation

1 if x > y:

2 return x

3 return y

max(0,3):

9/16/25 Conditionals & Program Flow 17

max 3

x 0

y 3

Frame sequence

depends on flow
Skips line 2

Program Flow and Call Frames

def max(x,y):

 """Returns:

max of x, y"""

 # simple

implementation

1 if x > y:

2 return x

3 return y

max(0,3):

9/16/25 Conditionals & Program Flow 18

max

x 0

y 3

Frame sequence

depends on flow
Skips line 2

RETURN

3

Program Flow vs. Local Variables

def max(x,y):

 """Returns: max

of x, y"""

 # swap x, y

 # put the

larger in y

1 if x > y:

2 temp = x

3 x = y

4 y = temp

5 return y

• max(3,0):

9/16/25 Conditionals & Program Flow 19

max 1

x 3 y 0

Swaps max

into var y

Program Flow vs. Local Variables

def max(x,y):

 """Returns: max

of x, y"""

 # swap x, y

 # put the

larger in y

1 if x > y:

2 temp = x

3 x = y

4 y = temp

5 return y

• max(3,0):

9/16/25 Conditionals & Program Flow 20

max 2

x 3 y 0

Swaps max

into var y

Program Flow vs. Local Variables

def max(x,y):

 """Returns: max

of x, y"""

 # swap x, y

 # put the

larger in y

1 if x > y:

2 temp = x

3 x = y

4 y = temp

5 return y

• max(3,0):

9/16/25 Conditionals & Program Flow 21

max 3

x 3 y 0

temp 3

Swaps max

into var y

Program Flow vs. Local Variables

def max(x,y):

 """Returns: max

of x, y"""

 # swap x, y

 # put the

larger in y

1 if x > y:

2 temp = x

3 x = y

4 y = temp

5 return y

• max(3,0):

9/16/25 Conditionals & Program Flow 22

max 4

x 0 y 0

temp 3

Swaps max

into var y

Program Flow vs. Local Variables

def max(x,y):

 """Returns: max

of x, y"""

 # swap x, y

 # put the

larger in y

1 if x > y:

2 temp = x

3 x = y

4 y = temp

5 return y

• max(3,0):

9/16/25 Conditionals & Program Flow 23

max 5

x 0 y 3

temp 3

Swaps max

into var y

Program Flow vs. Local Variables

def max(x,y):

 """Returns: max

of x, y"""

 # swap x, y

 # put the

larger in y

1 if x > y:

2 temp = x

3 x = y

4 y = temp

5 return y

• max(3,0):

9/16/25 Conditionals & Program Flow 24

max

x 0 y 3

RETURN 3

temp 3

Swaps max

into var y

Program Flow vs. Local Variables

def max(x,y):

 """Returns: max

of x, y"""

 # swap x, y

 # put the

larger in y

1 if x > y:

2 temp = x

3 x = y

4 y = temp

5 return temp

• Value of max(3,0)?

9/16/25 Conditionals & Program Flow 25

A: 3

B: 0

C: Error!

D: I do not know

Program Flow vs. Local Variables

def max(x,y):

 """Returns: max

of x, y"""

 # swap x, y

 # put the

larger in y

1 if x > y:

2 temp = x

3 x = y

4 y = temp

5 return temp

• Value of max(3,0)?

9/16/25 Conditionals & Program Flow 26

A: 3

B: 0

C: Error!

D: I do not know

CORRECT

• Local variables last until

▪ They are deleted or

▪ End of the function

• Even if defined inside if

Program Flow vs. Local Variables

def max(x,y):

 """Returns: max

of x, y"""

 # swap x, y

 # put the

larger in y

1 if x > y:

2 temp = x

3 x = y

4 y = temp

5 return temp

• Value of max(0,3)?

9/16/25 Conditionals & Program Flow 27

A: 3

B: 0

C: Error!

D: I do not know

Program Flow vs. Local Variables

def max(x,y):

 """Returns: max

of x, y"""

 # swap x, y

 # put the

larger in y

1 if x > y:

2 temp = x

3 x = y

4 y = temp

5 return temp

• Value of max(0,3)?

9/16/25 Conditionals & Program Flow 28

A: 3

B: 0

C: Error!

D: I do not know

CORRECT

• Variable existence

depends on flow

• Understanding flow

is important in testing

Testing and Code Coverage

• Typically, tests are written from specification

▪ This is because they should be written first

▪ You run these tests while you implement

• But sometimes tests leverage code structure

▪ You know the control-flow branches

▪ You want to make sure each branch is correct

▪ So you explicitly have a test for each branch

• This is called code coverage

9/16/25 Conditionals & Program Flow 29

Which Way is Correct?

• Code coverage requires knowing code

▪ So it must be done after implementation

▪ But best practice is to write tests first

• Do them BOTH

▪ Write tests from the specification

▪ Implement the function while testing

▪ Go back and add tests for full coverage

▪ Ideally this does not require adding tests

9/16/25 Conditionals & Program Flow 30

Recall: Debugging

• Unit tests cannot find the source of an error

• Idea: “Visualize” the program with print statements

def last_name_first(n):

 """Returns: copy of n in form 'last-

name, first-name' """

 end_first = n.find(' ')

 print(end_first)

 first = n[:end_first]

 print('first is '+str(first))

 last = n[end_first+1:]

 print('last is '+str(last))

 return last+', '+first9/16/25 Conditionals & Program Flow 31

Print variable after

each assignment

Called watches

Now Have a Different Challege

Put max of x, y

in z

 print('before

if')

 if x > y:

 print('if

x>y')

 z = x

 else:

print('else x<=y')

 z = y

 print('after

if')

• What was executed?

▪ The if -statement?

▪ Or the else-statement?

• More print statements

▪ Trace program flow

▪ Verify flow is correct

9/16/25 Conditionals & Program Flow 32

Called traces

Watches vs. Traces

Watch

• Visualization tool

▪ Often print/log

statement

▪ May have IDE support

• Looks at variable value

▪ Anywhere it can change

▪ Often after assignment

Trace

• Visualization tool

▪ Often print/log

statement

▪ May have IDE support

• Looks at program flow

▪ Anywhere it can change

▪ Before/after control

9/16/25 Conditionals & Program Flow 33

Traces and Functions

print('before

if')

 if x > y:

 print('if

x>y')

 z = y

 print(z)

 else:

print('else x<=y')

 z = y

 print(z)

 print('after

if')

9/16/25 Conditionals & Program Flow 34

Watches Traces

Example: flow.py

Conditionals: If-Elif-Else-Statements

Format

if expression :

 statement

 …

elif expression :

 statement

 …

 …

 else:

 statement

 …

Example

 # Put max of x, y,

z in w

 if x > y and x >

z:

 w = x

 elif y > z:

 w = y

 else:

 w = z

9/16/25 Conditionals & Program Flow 35

Conditionals: If-Elif-Else-Statements

Format

if expression :

 statement

 …

elif expression :

 statement

 …

 …

 else:

 statement

 …

Notes on Use

9/16/25 Conditionals & Program Flow 36

• No limit on number of elif

▪ Can have as many as want

▪ Must be between if, else

• The else is always optional

▪ if-elif by itself is fine

• Booleans checked in order

▪ Once it finds first True,

skips over all others

▪ else means all are false

Python Tutor Example

9/16/25 Conditionals & Program Flow 37

Conditional Expressions

Format

e1 if bexp else e2

• e1 and e2 are any expression

• bexp is a boolean expression

• This is an expression!

▪ Evaluates to e1 if bexp

True

▪ Evaluates to e2 if bexp

False

Example

Put max of x,

y in z

z = x if x > y

else y

9/16/25 Conditionals & Program Flow 38

expression,

not statement

	Slide 1: Conditionals & Control Flow
	Slide 2: Announcements For This Lecture
	Slide 3: Testing last_name_first(n)
	Slide 4: Types of Testing
	Slide 5: Types of Testing
	Slide 6: Finding the Error
	Slide 7: How to Use the Results
	Slide 8: Warning About Print Statements
	Slide 9: Structure vs. Flow
	Slide 10: Structure vs. Flow: Example
	Slide 11: Conditionals: If-Statements
	Slide 12: Python Tutor Example
	Slide 13: Conditionals: If-Else-Statements
	Slide 14: Python Tutor Example
	Slide 15: Conditionals: “Control Flow” Statements
	Slide 16: Program Flow and Call Frames
	Slide 17: Program Flow and Call Frames
	Slide 18: Program Flow and Call Frames
	Slide 19: Program Flow vs. Local Variables
	Slide 20: Program Flow vs. Local Variables
	Slide 21: Program Flow vs. Local Variables
	Slide 22: Program Flow vs. Local Variables
	Slide 23: Program Flow vs. Local Variables
	Slide 24: Program Flow vs. Local Variables
	Slide 25: Program Flow vs. Local Variables
	Slide 26: Program Flow vs. Local Variables
	Slide 27: Program Flow vs. Local Variables
	Slide 28: Program Flow vs. Local Variables
	Slide 29: Testing and Code Coverage
	Slide 30: Which Way is Correct?
	Slide 31: Recall: Debugging
	Slide 32: Now Have a Different Challege
	Slide 33: Watches vs. Traces
	Slide 34: Traces and Functions
	Slide 35: Conditionals: If-Elif-Else-Statements
	Slide 36: Conditionals: If-Elif-Else-Statements
	Slide 37: Python Tutor Example
	Slide 38: Conditional Expressions

