[ecture 6

Specifications & Testing

Announcements For This Lecture

Last Call Assignment 1
* Acad. Integrity Quiz * Posted on tomorrow
» Take 1t by tomorrow = Due Fri, Sep. 19"
* Also remember survey = Today’s lab will help

= Revise until correct

e Can work 1n pairs

= We will pair if needed

= Submit request tomorrow

* One submission per pair

9/11/25 Specifications & Testing

One-on-One Sessions

 Starts Monday: 1/2-hour one-on-one sessions

* Bring computer to work with instructor, TA or consultant

= Hands on, dedicated help with Labs 6 (and related)
= To prepare for assignment, not for help on assignment

 Limited availability: we cannot get to everyone
= Students with experience or confidence should hold back

 Sign up online in CMS: first come, first served

* Choose assignment One-on-One
= Pick a time that works for you; will add slots as possible
= Can sign up starting at Spm TODAY

9/11/25 Specifications & Testing

Recall: The Python API

docs.pythen.org/3/library/math.html

Function
name

Of Contents

T tical

&) Documentation » The Python Standard Library » 9. Numeric and Mathematical Modules »

9.2.

Gaming v News~ Research~ Commentary v #comments Financial v Travel v Shopping~ Technical v TroubleShooting v Developer v BBQ~ Misc v
9.2. math — Mathematical functions — Python 3.6.2 documentation

Go | | previous | next | modules

index

math.ceil(x)
ceiling of x, the smallest integer greater than or equal to x.

% Possible arguments J

ctions are provided by this module. Except when explicitly noted otherwise, all return values are floats.

A Return the
S

T 9.Z.9. ANgumar
rsion

Hyperbolic
ons
Special functions

Constants

Module

Previous topic
9.1. numbers — Numeric
abstract base classes

Next topic
9.3. cmath — Mathematical
functions for complex

numbers

This Page

Report a Bug
Show Source

T

What the function evaluates to

oat, delegates to x._ ceil_ (), which should return an

* This 1s a specification

math. copysign(x, y)
Return a float with the magnitude (absolute value)

«

math. fabs(x)
Return the absolute value of x.

math. £loor(x)
Return the floor of x, the largest integer less than o

math. fmod(x, y)
Return fmod(x, y), as defined by the platform C lib
C standard is that fmod(x, y) be exactly (mathemg
same sign as x and magnitude less than abs(y). Pyt
float arguments. For example, fmod(-1e-100, 1lel0 5

e Write them as docstrings

* Enough info to call function

math. factorial(x)
* But not how to implement

9/11/25

Specifications & Testing

7

Anatomy of a Specification
‘

One line description,
def greet (n) : Zfollowed by blank line

"""Prints a greeting to the name n

Greeting has format 'Hello <n>!'

Followed by conversation starter.

Parameter n: person To greet
Precondition: n 1s a string"""
print ('Hello "+n+'!")

print ('How are you?')

9/11/25 Specifications & Testing 5

Anatomy of a Specification
‘

One line description,
def greet (n) : Zfollowed by blank line
"""Prints a greeting to the name n

More detail about the A
function. It may be

Followed by conversatiol| many paragraphs.

Greeting has format

Parameter n: person To greet
Precondition: n 1s a string"""
print ('Hello "+n+'!")

print ('How are you?')

9/11/25 Specifications & Testing 6

Anatomy of a Specification
‘

One line description,
def greet (n) : Zfollowed by blank line
"""Prints a greeting to the name n -
More detail about the
function. It may be

Followed by conversatio\@mwpmmﬂqm&

.)

Parameter n: person tK\Parameter description)

Greeting has format

Precondition: n 1s a string"""
print ('Hello "+n+'!")

print ('How are you?')

9/11/25 Specifications & Testing 7

Anatomy of a Specification
‘

One line description,
def greet (n) : Z\followed by blank line
"""Prints a greeting to the name n

More detail about the h
function. It may be

Followed by conversatio|many paragraphs.

Greeting has format

Parameter n: person t K\Paramete:r description
Precondition: n 1s a Precondition specifies
print ('Hello "+n+'!") assumptions we make

about the arguments

print ('How are you?')

9/11/25 Specifications & Testing 8

Anatomy of a Specification

g . ..
One line description,
def to centigrade (x): followed by blank line
"""Returns x converted centigrade

More detail about the A
Value returned has type] function. It may be

many paragraphs.
Parameter x: temp 1n ﬁg{vaﬂhmﬁf §
1

Parameter description

Precondition: xXx 1s a f

return 5* (x-32)/9.0 Precondition speciﬁes\

assumptions we make
about the arguments

J

9/11/25 Specifications & Testing 9

Anatomy of a Specification
@

‘Returns” indicates a
def to centigrade (x): fruitful function
ns x converted centigrade
More detail about the A
Value returned has type] function. It may be

many paragraphs.
Parameter x: temp 1n ﬁ%fvaﬂhmﬁf §
1

Parameter description

Precondition: xXx 1s a f

return 5* (x-32)/9.0 Precondition speciﬁes\

assumptions we make
about the arguments

J

9/11/25 Specifications & Testing 10

What Makes a Specification “Good”?

* Software development 1s a business
= Not just about coding — business processes

" Processes enable better code development
» Complex projects need multi-person teams
* Lone programmers do simple contract work

" Teams must have people working separately

* Processes are about how to break-up the work
= What pieces to give each team member?

= How can we fit these pieces back together?

9/11/25 Specifications & Testing

11

Functions as a Way to Separate Work

Developer 1 Developer 2

. Defines Calls .

9/11/25 Specifications & Testing 12

Working on Complicated Software

Developer 1 Developer 2

. Calls
Architect plans
the separation Func 6

9/11/25 Specifications & Testing

What Happens When Code Breaks?

Developer 1 b 'S Developer 2

. r | BROKEN | ' \ .
. Defines Calls .
4)

Whose fault 1s 1t?
Who must fix 1t?

9/11/25 Specifications & Testing 14

Purpose of a Specification

* To clearly layout responsibility

* What does the function promise to do?

= What 1s the allowable use of the function?
* From this responsibility we determine

* [f definer implemented function properly

= If caller uses the function 1in a way allowed
* A specification is a business contract

= Requires a formal documentation style

= Rules for modifying contract beyond course scope

9/11/25 Specifications & Testing 15

Preconditions are a Promise

* If precondition true

= Function must work

* If precondition false
* Function might work

* Function might not

* Assigns responsibility

= How to tell fault?

9/11/25

Specifications & destingd gnd

>>>
to centigrade (32.0)
0.0

>>>
to centigrade ('32")

Traceback (most recent
call last):

File "<stdinx!", line 1,
in

‘[Precondition'ii\om, ,
line 19 ..
TypeError: unsupported
operand type(s) for -:

'int'

16

Assigning Responsibility

Developer 1 Developer 2

@ M@
Defines Calls
Precondition

violated

9/11/25 Specifications & Testing 17

Assigning Responsibility

Developer 1 Developer 2

@ =M@
Defines Calls
Precondition

correctly met

9/11/25 Specifications & Testing 18

What if it Just Works?

 Violation != crash

= Sometimes works anyway

>>>
to centigrade (32.0)

= Undocumented behavior 0.0

* Butis bad practice

i . + ~ e o)
Definer may change the . IPreconditionm—j

definition at any time

= Can do anything so long

as specification met

= (Caller code breaks

 Hits Microsoft devs a lot

9/11/25

Ve U

Precondition

violations are
unspecified!

Specifications & Testing

19

Testing Software

* You are responsible for your function definition
" You must ensure 1t meets the specification
"= May even need to prove it to your boss
* Testing: Analyzing & running a program
= Part of, but not the same as, debugging
* Finds bugs (errors), but does not remove them

* To test your function, you create a test plan

= A test plan 1s made up of several test cases

= Each 1s an input (argument), and 1ts expected output

9/11/25 Specifications & Testing 20

Test Plan: A Case Study

def number vowels (w) :

wiiew

Returns: number of vowels 1n string w.

Parameter w: The text to check for
vowels

Precondition: w string w/ at least one
letter and only letters

mwiww

9/11/25

Brainstorm

some test cases

Specifications & Testing

21

Test Plan: A Case Study

def number vowels (w) :

wiiew

rhythm?
crwth? J§

Parameter w: The text to check for
vowels

Returns: number of vowels 1

Precondition: w string w/ at least one
letter and only letters

mwiww

9/11/25

Surprise!

Bad Specification

Specifications & Testing

22

Test Plan: A Case Study

9/11/25

def number vowels (w) :

wiiew

Returns: number of vowels 1n string w.

Vowels are defined to be
'a','e','1"'",'0"', and 'u'. 'y' 1s a vowel
1f 1t 1s

not at the start of the word.

Repeated vowels are counted
separately. Both upper case and
lower case vowels are counted.

Examples:

Specifications & Testing

B i Y m i~ — [R i I P PR £ .

23

Test Plan: A Case Study

def number vowels (w) :

. Some Test Cases

Returns: number Rl OuUTPUT

"hat' 1

Vowels are defi
'a','e','i','O', an
if it 1is 'grrr' 0

not at the start of the word.

'aeiou' 5

Repeated vowels are counted
separately. Both upper case and
lower case vowels are counted.

Examples:
9/11/25 Specifications & Testing

Representative Tests

* We cannot test all possible mputs
= “Infinite” possibilities (strings arbritrary length)
= Even 1if finite, way too many to test

» Limit to tests that are representative
= Each test 1s a significantly different input

= Every possible input is similar to one chosen
e This 1s an art, not a science

= [f easy, no one would ever have bugs

= Learn with much practice (and why teach early)

9/11/25 Specifications & Testing

25

Representative Tests

Representative Tests for
number vowels (w)

Simplest

case first! Word with just one vowel

= For each possible vowel!
A little Word with multiple vowels
COIIlpl@X = Of the same vowel

= Of different vowels

Word with only vowels

Word with no vowels

Specifications & Testing 26

How Many “Different” Tests Are Here?

number vowels (w)

INPUT OUTPUT

"hat'
'"charm'
'bet'
'beet'
'beetle'

9/11/25

1 A:

do not know

W DN =

Specifications & Testing 27

How Many “Different” Tests Are Here?

number vowels (w)

INPUT OUTPUT

'hat' 1 A:2
'charm' 1 B: 3 CORRECT(ISH)
'bet' | o

D:5
'beet' 2 E: I do not know
'beetle' 3

 If in doubt, just add more tests

* You are never penalized for too many tests

9/11/25 Specifications & Testing

The Rule of Numbers

* When testing the numbers are 1, 2, and 0
 Number 1: The simplest test possible

" [f a complex test fails, what was the problem?

= Example: Word with just one vowels
 Number 2: Add more than was expected

= Example: Multiple vowels (all ways)
 Number 0: Make something missing

= Example: Words with no vowels

9/11/25 Specifications & Testing 29

Other Considerations

* Is this function counting?

* Numbers matter, but position not so much

= Example: "beet' and 'fete' are sameish
* Is this function searching?

= Being at the ends is interesting

= Example: "act' and 'spa' are different
* [s this function slicing?

= Relative position matters
= Example: 'beet' and 'fete' are different

9/11/25 Specifications & Testing

30

Other Considerations

* Is this function counting?

* Numbers matter, but position not so much

= Example: 'beet ' and ' fetal oosmacish

* [s this

= Bein

= Exar

* [s this function slicing?

= Relative position matters
= Example: 'beet' and 'fete' are different

9/11/25 Specifications & Testing

31

Running Example

* The following function has a bug:

def last name first(n):

"""Returns a co of n in the form 'last—-name)
Y
first—-name’

Precondition: n 1s in the form 'first-name last-
name'
with one or more spaces hetween the two names|'""

end first = n.f] Precondition
first = n[:end 1 forbids a 0™ test

last = n[end_?izi//ﬁf]
return last+', '+firs

* Representative Tests:

" last name first ('Walker White’) returns
o1125 'White, Walke rgpeciﬁcations & Testing 32

B | ot name fF1vet+ ("WWallker Whiaite’)

Test Scripts: Automating Testing

* To test a function we have to do the following
= Start the Python interactive shell

* Import the module with the function

= Call the function several times to see 1f it 1s okay
 But this 1s incredibly time consuming!

= Have to quit Python 1f we change module

= Have to retype everything each time

* What if we made a second Python file?
= This file 1s a script to test the module

9/11/25 Specifications & Testing

33

Unit Test: An Automated Test Script

* A unit test 1s a script to test a single function

* Imports the function module (so 1t can access it)
* Imports the introcs module (for testing)

* Implements one or more test cases
A representative imnput
* The expected output

 The test cases use the introcs function

def assert equals (expected, received):

"""Ouit program 1f expected and

' : RN
9/11/25]:‘6 Ccelve d dl f f p]eic;iﬁcations & Testing 34

Testing last name first(n)

import name # The module we want to
test

import introcs # Includes the test
procedures

Test one space between names
result = name.last name first('Walker White’)

introcs.assert equals('White, Walker', result)

Test multiple spaces between names
result = name.last name first('Walker
White')

introcs.assert equals ('White, Walker', result)
9/11/25 Specifications & Testing 35

Testing last name first(n)

import name Thao madnla wa want to
test Comment

import introcs describing test o5t
procedures

Test one space between names
.last name first('Walker White’)

t equals('Whit Input f', result)

Test multiple spaces between names

result = name.last n first('Walker
White') Expected Output }

introcs.assert equals ('White, Walker', result)
9/11/25 Specifications & Testing

Actual Output

36

Testing last name first(n)

import name # The module we want to
test

import introcs # Includes the test
procedures

Test one space between names Quits Python

result = name.last name first('W if not equal

introcs.assert equals('White, Walker', result)

Test multiple spaces between names

==

result = name.last name first (' . .
White!') Message will print

out only if no errors.

introcs.assert equals ('White,
9/11/25 Specifications & Testing 37

Testing Multiple Functions

» Unit test 1s for a single function
= But you are often testing many functions

* Do not want to write a test script for each

* Idea: Put test cases inside another procedure
= Each function tested gets its own procedure
* Procedure has test cases for that function

= Also some print statements (to verify tests work)

» Turn tests on/off by calling the test procedure

9/11/25 Specifications & Testing

38

Test Procedure

def test last name first():

"""Test procedure for last name first(n)""”
print ('Testing function last name first')
result = name.last name first('Walker White’)

introcs.assert equals ('White, Walker',
result)

result = name.last name first('Walker
White')

introcs.assert equals ('White, Walker',
result)

Execution of the testing code

test last name first()

9/11/25 Specifications & Testin 39
print ('Module name passe aﬂﬁgtests.')

Test Procedure

def test last name first():

"""Test procedure for last name first(n)""”
print ('Testing function last name first')
result = name.last name first('Walker White’)

introcs.assert equals ('White, Walker',
result)

result = name.last name first('Walker
White')

introcs.assert e No tests h ker',
result) o tests happen

—_ 1f you forget this

Execution of the testing code

test last name first()

9/11/25 Specifications & Testin 40
print ('Module name passe aﬂﬁgtests.')

	Slide 1: Specifications & Testing
	Slide 2: Announcements For This Lecture
	Slide 3: One-on-One Sessions
	Slide 4: Recall: The Python API
	Slide 5: Anatomy of a Specification
	Slide 6: Anatomy of a Specification
	Slide 7: Anatomy of a Specification
	Slide 8: Anatomy of a Specification
	Slide 9: Anatomy of a Specification
	Slide 10: Anatomy of a Specification
	Slide 11: What Makes a Specification “Good”?
	Slide 12: Functions as a Way to Separate Work
	Slide 13: Working on Complicated Software
	Slide 14: What Happens When Code Breaks?
	Slide 15: Purpose of a Specification
	Slide 16: Preconditions are a Promise
	Slide 17: Assigning Responsibility
	Slide 18: Assigning Responsibility
	Slide 19: What if it Just Works?
	Slide 20: Testing Software
	Slide 21: Test Plan: A Case Study
	Slide 22: Test Plan: A Case Study
	Slide 23: Test Plan: A Case Study
	Slide 24: Test Plan: A Case Study
	Slide 25: Representative Tests
	Slide 26: Representative Tests
	Slide 27: How Many “Different” Tests Are Here?
	Slide 28: How Many “Different” Tests Are Here?
	Slide 29: The Rule of Numbers
	Slide 30: Other Considerations
	Slide 31: Other Considerations
	Slide 32: Running Example
	Slide 33: Test Scripts: Automating Testing
	Slide 34: Unit Test: An Automated Test Script
	Slide 35: Testing last_name_first(n)
	Slide 36: Testing last_name_first(n)
	Slide 37: Testing last_name_first(n)
	Slide 38: Testing Multiple Functions
	Slide 39: Test Procedure
	Slide 40: Test Procedure

