
Specifications & Testing

Lecture 6



Announcements For This Lecture

Last Call

• Acad. Integrity Quiz

• Take it by tomorrow

• Also remember survey

Assignment 1

• Posted on tomorrow

▪ Due Fri, Sep. 19th

▪ Today’s lab will help

▪ Revise until correct

• Can work in pairs

▪ We will pair if needed

▪ Submit request tomorrow

▪ One submission per pair
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One-on-One Sessions

• Starts Monday: 1/2-hour one-on-one sessions

▪ Bring computer to work with instructor, TA or consultant

▪ Hands on, dedicated help with Labs 6 (and related)

▪ To prepare for assignment, not for help on assignment

• Limited availability: we cannot get to everyone

▪ Students with experience or confidence should hold back

• Sign up online in CMS: first come, first served

▪ Choose assignment One-on-One

▪ Pick a time that works for you; will add slots as possible

▪ Can sign up starting at 5pm TODAY
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Recall: The Python API
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Function 

name

Possible arguments

What the function evaluates to
Module

• This is a specification

▪ Enough info to call function

▪ But not how to implement

• Write them as docstrings



Anatomy of a Specification

def greet(n):

"""Prints a greeting to the name n

Greeting has format 'Hello <n>!'

Followed by conversation starter. 

Parameter n: person to greet

Precondition: n is a string"""

print('Hello '+n+'!')

print('How are you?')
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One line description,

followed by blank line

Anatomy of a Specification

def to_centigrade(x):

"""Returns  x converted to centigrade

Value returned has type float.

Parameter x: temp in fahrenheit 

Precondition: x is a float"""

return 5*(x-32)/9.0
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One line description,

followed by blank line

Anatomy of a Specification

def to_centigrade(x):

"""Returns  x converted to centigrade

Value returned has type float.

Parameter x: temp in fahrenheit 

Precondition: x is a float"""

return 5*(x-32)/9.0
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“Returns” indicates a 

fruitful function

More detail about the 

function.  It may be 

many paragraphs.

Parameter description

Precondition specifies 

assumptions we make 

about the arguments



What Makes a Specification “Good”?

• Software development is a business

▪ Not just about coding – business processes

▪ Processes enable better code development

• Complex projects need multi-person teams

▪ Lone programmers do simple contract work

▪ Teams must have people working separately

• Processes are about how to break-up the work

▪ What pieces to give each team member?

▪ How can we fit these pieces back together?
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Functions as a Way to Separate Work

Functio

n

Developer 1 Developer 2

Defines Calls
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Working on Complicated Software

Developer 1 Developer 2

Func 1 Func 2

Func 3

Func 4 Func 5

Func 6

Calls

Architect plans

the separation
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What Happens When Code Breaks?

Functio

n

Developer 1 Developer 2

Defines Calls

BROKEN

Whose fault is it?

Who must fix it?
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Purpose of a Specification

• To clearly layout responsibility

▪ What does the function promise to do?

▪ What is the allowable use of the function?

• From this responsibility we determine

▪ If definer implemented function properly

▪ If caller uses the function in a way allowed

• A specification is a business contract 

▪ Requires a formal documentation style

▪ Rules for modifying contract beyond course scope

9/11/25 Specifications & Testing 15



Preconditions are a Promise

• If precondition true

▪ Function must work

• If precondition false

▪ Function might work

▪ Function might not 

• Assigns responsibility

▪ How to tell fault?

>>> 

to_centigrade(32.0)

0.0

>>> 

to_centigrade('32')

Traceback (most recent 

call last):

  File "<stdin>", line 1, 

in <module>

  File "temperature.py", 

line 19 …

TypeError: unsupported 

operand type(s) for -: 

'str' and 'int'

Precondition violated
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Assigning Responsibility

Functio

n

Developer 1 Developer 2

Defines Calls

BROKEN

Precondition 

violated
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Assigning Responsibility

Functio

n

Developer 1 Developer 2

Defines Calls

BROKEN

Precondition

correctly met
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What if it Just Works?

• Violation != crash

▪ Sometimes works anyway

▪ Undocumented behavior

• But is bad practice

▪ Definer may change the 

definition at any time

▪ Can do anything so long 

as specification met

▪ Caller code breaks

• Hits Microsoft devs a lot

>>> 

to_centigrade(32.0)

0.0

>>> 

to_centigrade(212)

100.0
Precondition violated

Precondition 

violations are 

unspecified!
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Testing Software

• You are responsible for your function definition

▪ You must ensure it meets the specification

▪ May even need to prove it to your boss

• Testing: Analyzing & running a program 

▪ Part of, but not the same as, debugging

▪ Finds bugs (errors), but does not remove them

• To test your function, you create a test plan

▪ A test plan is made up of several test cases

▪ Each is an input (argument), and its expected output
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Test Plan: A Case Study

def number_vowels(w):

    """

   Returns: number of vowels in string w.

 

    Parameter w: The text to check for 

vowels

   Precondition: w string w/ at least one 

letter and only letters

   """

   …

Brainstorm 

some test cases
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Test Plan: A Case Study

def number_vowels(w):

    """

   Returns: number of vowels in string w.

 

    Parameter w: The text to check for 

vowels

   Precondition: w string w/ at least one 

letter and only letters

   """

   …

Surprise! 

Bad Specification

rhythm?

crwth?
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Test Plan: A Case Study

def number_vowels(w):

    """

   Returns: number of vowels in string w.

 

    Vowels are defined to be 

'a','e','i','o', and 'u'. 'y' is a vowel 

if it is 

    not at the start of the word.

    Repeated vowels are counted 

separately.  Both upper case and   

    lower case vowels are counted.

    Examples: ….

     

    Parameter w: The text to check for 

vowels

    Precondition: w string w/ at least one 

letter and only letters

   """
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Test Plan: A Case Study

def number_vowels(w):

    """

   Returns: number of vowels in string w.

 

    Vowels are defined to be 

'a','e','i','o', and 'u'. 'y' is a vowel 

if it is 

    not at the start of the word.

    Repeated vowels are counted 

separately.  Both upper case and   

    lower case vowels are counted.

    Examples: ….

     

    Parameter w: The text to check for 

vowels

    Precondition: w string w/ at least one 

letter and only letters

   """

INPUT OUTPUT

'hat' 1

'aeiou' 5

'grrr' 0

Some Test Cases
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Representative Tests

• We cannot test all possible inputs

▪ “Infinite” possibilities (strings arbritrary length)

▪ Even if finite, way too many to test

• Limit to tests that are representative

▪ Each test is a significantly different input

▪ Every possible input is similar to one chosen

• This is an art, not a science

▪ If easy, no one would ever have bugs

▪ Learn with much practice (and why teach early)
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Representative Tests

Representative Tests for

number_vowels(w)

• Word with just one vowel

▪ For each possible vowel!

• Word with multiple vowels

▪ Of the same vowel

▪ Of different vowels

• Word with only vowels

• Word with no vowels

Simplest 

case first!

A little 

complex

“Weird”

cases
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How Many “Different” Tests Are Here?

INPUT OUTPUT

'hat' 1

'charm' 1

'bet' 1

'beet' 2

'beetle' 3
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number_vowels(w)

A: 2

B: 3

C: 4

D: 5

E: I do not know



How Many “Different” Tests Are Here?

INPUT OUTPUT

'hat' 1

'charm' 1

'bet' 1

'beet' 2

'beetle' 3
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number_vowels(w)

A: 2

B: 3

C: 4

D: 5

E: I do not know

• If in doubt, just add more tests

• You are never penalized for too many tests

CORRECT(ISH)



The Rule of Numbers

• When testing the numbers are 1, 2, and 0

• Number 1: The simplest test possible

▪ If a complex test fails, what was the problem?

▪ Example: Word with just one vowels

• Number 2: Add more than was expected

▪ Example: Multiple vowels (all ways)

• Number 0: Make something missing

▪ Example: Words with no vowels
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Other Considerations

• Is this function counting?

▪ Numbers matter, but position not so much

▪ Example: 'beet' and 'fete' are sameish

• Is this function searching?

▪ Being at the ends is interesting

▪ Example: 'act' and 'spa' are different

• Is this function slicing?

▪ Relative position matters

▪ Example: 'beet' and 'fete' are different
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Running Example

• The following function has a bug:
def last_name_first(n):

 """Returns a copy of n in the form 'last-name, 

first-name’

 Precondition: n is in the form 'first-name last-

name'

 with one or more spaces between the two names"""

   end_first = n.find(' ')

    first = n[:end_first]

    last  = n[end_first+1:]

 return last+', '+first

• Representative Tests:

▪ last_name_first('Walker White’) returns 

'White, Walker'

▪ last_name_first('Walker      White’) 

returns 'White, Walker'
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Precondition 

forbids a 0th test 



Test Scripts: Automating Testing

• To test a function we have to do the following

▪ Start the Python interactive shell

▪ Import the module with the function

▪ Call the function several times to see if it is okay

• But this is incredibly time consuming!

▪ Have to quit Python if we change module

▪ Have to retype everything each time

• What if we made a second Python file?

▪ This file is a script to test the module
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Unit Test: An Automated Test Script

• A unit test is a script to test a single function

▪ Imports the function module (so it can access it)

▪ Imports the introcs module (for testing)

▪ Implements one or more test cases

• A representative input

• The expected output

• The test cases use the introcs function

def assert_equals(expected,received):

     """Quit program if expected and 

received differ"""
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Testing last_name_first(n)

import name  # The module we want to 

test

import introcs  # Includes the test 

procedures

 

# Test one space between names

result = name.last_name_first('Walker White’)

introcs.assert_equals('White, Walker', result)

    

# Test multiple spaces between names

result = name.last_name_first('Walker            

White')        

introcs.assert_equals('White, Walker', result)

print('Module name passed all tests.')
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Testing last_name_first(n)

import name  # The module we want to 

test

import introcs  # Includes the test 

procedures

 

# Test one space between names

result = name.last_name_first('Walker White’)

introcs.assert_equals('White, Walker', result)

    

# Test multiple spaces between names

result = name.last_name_first('Walker            

White')        

introcs.assert_equals('White, Walker', result)

print('Module name passed all tests.')

9/11/25 Specifications & Testing 36

Actual Output
Input

Expected Output

Comment 

describing test



Testing last_name_first(n)
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Message will print 

out only if no errors.

Quits Python 

if not equal



Testing Multiple Functions

• Unit test is for a single function

▪ But you are often testing many functions

▪ Do not want to write a test script for each

• Idea: Put test cases inside another procedure

▪ Each function tested gets its own procedure

▪ Procedure has test cases for that function

▪ Also some print statements (to verify tests work)

• Turn tests on/off by calling the test procedure
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Test Procedure

def test_last_name_first():

    """Test procedure for last_name_first(n)""”

    print('Testing function last_name_first')

    result = name.last_name_first('Walker White’)

    introcs.assert_equals('White, Walker', 

result)

    result = name.last_name_first('Walker            

White')        

    introcs.assert_equals('White, Walker', 

result)

# Execution of the testing code

test_last_name_first()

print('Module name passed all tests.')
9/11/25 Specifications & Testing 39



Test Procedure
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No tests happen 

if you forget this
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