
Specifications & Testing

Lecture 6

Announcements For This Lecture

Last Call

• Acad. Integrity Quiz

• Take it by tomorrow

• Also remember survey

Assignment 1

• Posted on tomorrow

▪ Due Fri, Sep. 19th

▪ Today’s lab will help

▪ Revise until correct

• Can work in pairs

▪ We will pair if needed

▪ Submit request tomorrow

▪ One submission per pair

29/11/25 Specifications & Testing

One-on-One Sessions

• Starts Monday: 1/2-hour one-on-one sessions

▪ Bring computer to work with instructor, TA or consultant

▪ Hands on, dedicated help with Labs 6 (and related)

▪ To prepare for assignment, not for help on assignment

• Limited availability: we cannot get to everyone

▪ Students with experience or confidence should hold back

• Sign up online in CMS: first come, first served

▪ Choose assignment One-on-One

▪ Pick a time that works for you; will add slots as possible

▪ Can sign up starting at 5pm TODAY

9/11/25 Specifications & Testing 3

Recall: The Python API

9/11/25 Specifications & Testing 4

Function

name

Possible arguments

What the function evaluates to
Module

• This is a specification

▪ Enough info to call function

▪ But not how to implement

• Write them as docstrings

Anatomy of a Specification

def greet(n):

"""Prints a greeting to the name n

Greeting has format 'Hello <n>!'

Followed by conversation starter.

Parameter n: person to greet

Precondition: n is a string"""

print('Hello '+n+'!')

print('How are you?')

9/11/25 Specifications & Testing 5

One line description,

followed by blank line

Anatomy of a Specification

def greet(n):

"""Prints a greeting to the name n

Greeting has format 'Hello <n>!'

Followed by conversation starter.

Parameter n: person to greet

Precondition: n is a string"""

print('Hello '+n+'!')

print('How are you?')

9/11/25 Specifications & Testing 6

One line description,

followed by blank line

More detail about the

function. It may be

many paragraphs.

Anatomy of a Specification

def greet(n):

"""Prints a greeting to the name n

Greeting has format 'Hello <n>!'

Followed by conversation starter.

Parameter n: person to greet

Precondition: n is a string"""

print('Hello '+n+'!')

print('How are you?')

9/11/25 Specifications & Testing 7

One line description,

followed by blank line

More detail about the

function. It may be

many paragraphs.

Parameter description

Anatomy of a Specification

def greet(n):

"""Prints a greeting to the name n

Greeting has format 'Hello <n>!'

Followed by conversation starter.

Parameter n: person to greet

Precondition: n is a string"""

print('Hello '+n+'!')

print('How are you?')

9/11/25 Specifications & Testing 8

One line description,

followed by blank line

More detail about the

function. It may be

many paragraphs.

Parameter description

Precondition specifies

assumptions we make

about the arguments

One line description,

followed by blank line

Anatomy of a Specification

def to_centigrade(x):

"""Returns x converted to centigrade

Value returned has type float.

Parameter x: temp in fahrenheit

Precondition: x is a float"""

return 5*(x-32)/9.0

9/11/25 Specifications & Testing 9

More detail about the

function. It may be

many paragraphs.

Parameter description

Precondition specifies

assumptions we make

about the arguments

One line description,

followed by blank line

Anatomy of a Specification

def to_centigrade(x):

"""Returns x converted to centigrade

Value returned has type float.

Parameter x: temp in fahrenheit

Precondition: x is a float"""

return 5*(x-32)/9.0

9/11/25 Specifications & Testing 10

“Returns” indicates a

fruitful function

More detail about the

function. It may be

many paragraphs.

Parameter description

Precondition specifies

assumptions we make

about the arguments

What Makes a Specification “Good”?

• Software development is a business

▪ Not just about coding – business processes

▪ Processes enable better code development

• Complex projects need multi-person teams

▪ Lone programmers do simple contract work

▪ Teams must have people working separately

• Processes are about how to break-up the work

▪ What pieces to give each team member?

▪ How can we fit these pieces back together?

9/11/25 Specifications & Testing 11

Functions as a Way to Separate Work

Functio

n

Developer 1 Developer 2

Defines Calls

9/11/25 Specifications & Testing 12

Working on Complicated Software

Developer 1 Developer 2

Func 1 Func 2

Func 3

Func 4 Func 5

Func 6

Calls

Architect plans

the separation

9/11/25 Specifications & Testing 13

What Happens When Code Breaks?

Functio

n

Developer 1 Developer 2

Defines Calls

BROKEN

Whose fault is it?

Who must fix it?

9/11/25 Specifications & Testing 14

Purpose of a Specification

• To clearly layout responsibility

▪ What does the function promise to do?

▪ What is the allowable use of the function?

• From this responsibility we determine

▪ If definer implemented function properly

▪ If caller uses the function in a way allowed

• A specification is a business contract

▪ Requires a formal documentation style

▪ Rules for modifying contract beyond course scope

9/11/25 Specifications & Testing 15

Preconditions are a Promise

• If precondition true

▪ Function must work

• If precondition false

▪ Function might work

▪ Function might not

• Assigns responsibility

▪ How to tell fault?

>>>

to_centigrade(32.0)

0.0

>>>

to_centigrade('32')

Traceback (most recent

call last):

 File "<stdin>", line 1,

in <module>

 File "temperature.py",

line 19 …

TypeError: unsupported

operand type(s) for -:

'str' and 'int'

Precondition violated

9/11/25 Specifications & Testing 16

Assigning Responsibility

Functio

n

Developer 1 Developer 2

Defines Calls

BROKEN

Precondition

violated

9/11/25 Specifications & Testing 17

Assigning Responsibility

Functio

n

Developer 1 Developer 2

Defines Calls

BROKEN

Precondition

correctly met

9/11/25 Specifications & Testing 18

What if it Just Works?

• Violation != crash

▪ Sometimes works anyway

▪ Undocumented behavior

• But is bad practice

▪ Definer may change the

definition at any time

▪ Can do anything so long

as specification met

▪ Caller code breaks

• Hits Microsoft devs a lot

>>>

to_centigrade(32.0)

0.0

>>>

to_centigrade(212)

100.0
Precondition violated

Precondition

violations are

unspecified!

9/11/25 Specifications & Testing 19

Testing Software

• You are responsible for your function definition

▪ You must ensure it meets the specification

▪ May even need to prove it to your boss

• Testing: Analyzing & running a program

▪ Part of, but not the same as, debugging

▪ Finds bugs (errors), but does not remove them

• To test your function, you create a test plan

▪ A test plan is made up of several test cases

▪ Each is an input (argument), and its expected output

9/11/25 Specifications & Testing 20

Test Plan: A Case Study

def number_vowels(w):

 """

 Returns: number of vowels in string w.

 Parameter w: The text to check for

vowels

 Precondition: w string w/ at least one

letter and only letters

 """

 …

Brainstorm

some test cases

9/11/25 Specifications & Testing 21

Test Plan: A Case Study

def number_vowels(w):

 """

 Returns: number of vowels in string w.

 Parameter w: The text to check for

vowels

 Precondition: w string w/ at least one

letter and only letters

 """

 …

Surprise!

Bad Specification

rhythm?

crwth?

9/11/25 Specifications & Testing 22

Test Plan: A Case Study

def number_vowels(w):

 """

 Returns: number of vowels in string w.

 Vowels are defined to be

'a','e','i','o', and 'u'. 'y' is a vowel

if it is

 not at the start of the word.

 Repeated vowels are counted

separately. Both upper case and

 lower case vowels are counted.

 Examples: ….

 Parameter w: The text to check for

vowels

 Precondition: w string w/ at least one

letter and only letters

 """

9/11/25 Specifications & Testing 23

Test Plan: A Case Study

def number_vowels(w):

 """

 Returns: number of vowels in string w.

 Vowels are defined to be

'a','e','i','o', and 'u'. 'y' is a vowel

if it is

 not at the start of the word.

 Repeated vowels are counted

separately. Both upper case and

 lower case vowels are counted.

 Examples: ….

 Parameter w: The text to check for

vowels

 Precondition: w string w/ at least one

letter and only letters

 """

INPUT OUTPUT

'hat' 1

'aeiou' 5

'grrr' 0

Some Test Cases

9/11/25 Specifications & Testing 24

Representative Tests

• We cannot test all possible inputs

▪ “Infinite” possibilities (strings arbritrary length)

▪ Even if finite, way too many to test

• Limit to tests that are representative

▪ Each test is a significantly different input

▪ Every possible input is similar to one chosen

• This is an art, not a science

▪ If easy, no one would ever have bugs

▪ Learn with much practice (and why teach early)

9/11/25 Specifications & Testing 25

Representative Tests

Representative Tests for

number_vowels(w)

• Word with just one vowel

▪ For each possible vowel!

• Word with multiple vowels

▪ Of the same vowel

▪ Of different vowels

• Word with only vowels

• Word with no vowels

Simplest

case first!

A little

complex

“Weird”

cases
9/11/25 Specifications & Testing 26

How Many “Different” Tests Are Here?

INPUT OUTPUT

'hat' 1

'charm' 1

'bet' 1

'beet' 2

'beetle' 3

9/11/25 Specifications & Testing 27

number_vowels(w)

A: 2

B: 3

C: 4

D: 5

E: I do not know

How Many “Different” Tests Are Here?

INPUT OUTPUT

'hat' 1

'charm' 1

'bet' 1

'beet' 2

'beetle' 3

9/11/25 Specifications & Testing 28

number_vowels(w)

A: 2

B: 3

C: 4

D: 5

E: I do not know

• If in doubt, just add more tests

• You are never penalized for too many tests

CORRECT(ISH)

The Rule of Numbers

• When testing the numbers are 1, 2, and 0

• Number 1: The simplest test possible

▪ If a complex test fails, what was the problem?

▪ Example: Word with just one vowels

• Number 2: Add more than was expected

▪ Example: Multiple vowels (all ways)

• Number 0: Make something missing

▪ Example: Words with no vowels
9/11/25 Specifications & Testing 29

Other Considerations

• Is this function counting?

▪ Numbers matter, but position not so much

▪ Example: 'beet' and 'fete' are sameish

• Is this function searching?

▪ Being at the ends is interesting

▪ Example: 'act' and 'spa' are different

• Is this function slicing?

▪ Relative position matters

▪ Example: 'beet' and 'fete' are different

9/11/25 Specifications & Testing 30

Other Considerations

• Is this function counting?

▪ Numbers matter, but position not so much

▪ Example: 'beet' and 'fete' are sameish

• Is this function searching?

▪ Being at the ends is interesting

▪ Example: 'act' and 'spa' are different

• Is this function slicing?

▪ Relative position matters

▪ Example: 'beet' and 'fete' are different

9/11/25 Specifications & Testing 31

Running Example

• The following function has a bug:
def last_name_first(n):

 """Returns a copy of n in the form 'last-name,

first-name’

 Precondition: n is in the form 'first-name last-

name'

 with one or more spaces between the two names"""

 end_first = n.find(' ')

 first = n[:end_first]

 last = n[end_first+1:]

 return last+', '+first

• Representative Tests:

▪ last_name_first('Walker White’) returns

'White, Walker'

▪ last_name_first('Walker White’)

returns 'White, Walker'

9/11/25 Specifications & Testing 32

Precondition

forbids a 0th test

Test Scripts: Automating Testing

• To test a function we have to do the following

▪ Start the Python interactive shell

▪ Import the module with the function

▪ Call the function several times to see if it is okay

• But this is incredibly time consuming!

▪ Have to quit Python if we change module

▪ Have to retype everything each time

• What if we made a second Python file?

▪ This file is a script to test the module

9/11/25 Specifications & Testing 33

Unit Test: An Automated Test Script

• A unit test is a script to test a single function

▪ Imports the function module (so it can access it)

▪ Imports the introcs module (for testing)

▪ Implements one or more test cases

• A representative input

• The expected output

• The test cases use the introcs function

def assert_equals(expected,received):

 """Quit program if expected and

received differ"""
9/11/25 Specifications & Testing 34

Testing last_name_first(n)

import name # The module we want to

test

import introcs # Includes the test

procedures

Test one space between names

result = name.last_name_first('Walker White’)

introcs.assert_equals('White, Walker', result)

Test multiple spaces between names

result = name.last_name_first('Walker

White')

introcs.assert_equals('White, Walker', result)

print('Module name passed all tests.')

9/11/25 Specifications & Testing 35

Testing last_name_first(n)

import name # The module we want to

test

import introcs # Includes the test

procedures

Test one space between names

result = name.last_name_first('Walker White’)

introcs.assert_equals('White, Walker', result)

Test multiple spaces between names

result = name.last_name_first('Walker

White')

introcs.assert_equals('White, Walker', result)

print('Module name passed all tests.')

9/11/25 Specifications & Testing 36

Actual Output
Input

Expected Output

Comment

describing test

Testing last_name_first(n)

import name # The module we want to

test

import introcs # Includes the test

procedures

Test one space between names

result = name.last_name_first('Walker White’)

introcs.assert_equals('White, Walker', result)

Test multiple spaces between names

result = name.last_name_first('Walker

White')

introcs.assert_equals('White, Walker', result)

print('Module name passed all tests.')

9/11/25 Specifications & Testing 37

Message will print

out only if no errors.

Quits Python

if not equal

Testing Multiple Functions

• Unit test is for a single function

▪ But you are often testing many functions

▪ Do not want to write a test script for each

• Idea: Put test cases inside another procedure

▪ Each function tested gets its own procedure

▪ Procedure has test cases for that function

▪ Also some print statements (to verify tests work)

• Turn tests on/off by calling the test procedure

9/11/25 Specifications & Testing 38

Test Procedure

def test_last_name_first():

 """Test procedure for last_name_first(n)""”

 print('Testing function last_name_first')

 result = name.last_name_first('Walker White’)

 introcs.assert_equals('White, Walker',

result)

 result = name.last_name_first('Walker

White')

 introcs.assert_equals('White, Walker',

result)

Execution of the testing code

test_last_name_first()

print('Module name passed all tests.')
9/11/25 Specifications & Testing 39

Test Procedure

def test_last_name_first():

 """Test procedure for last_name_first(n)""”

 print('Testing function last_name_first')

 result = name.last_name_first('Walker White’)

 introcs.assert_equals('White, Walker',

result)

 result = name.last_name_first('Walker

White')

 introcs.assert_equals('White, Walker',

result)

Execution of the testing code

test_last_name_first()

print('Module name passed all tests.')
9/11/25 Specifications & Testing 40

No tests happen

if you forget this

	Slide 1: Specifications & Testing
	Slide 2: Announcements For This Lecture
	Slide 3: One-on-One Sessions
	Slide 4: Recall: The Python API
	Slide 5: Anatomy of a Specification
	Slide 6: Anatomy of a Specification
	Slide 7: Anatomy of a Specification
	Slide 8: Anatomy of a Specification
	Slide 9: Anatomy of a Specification
	Slide 10: Anatomy of a Specification
	Slide 11: What Makes a Specification “Good”?
	Slide 12: Functions as a Way to Separate Work
	Slide 13: Working on Complicated Software
	Slide 14: What Happens When Code Breaks?
	Slide 15: Purpose of a Specification
	Slide 16: Preconditions are a Promise
	Slide 17: Assigning Responsibility
	Slide 18: Assigning Responsibility
	Slide 19: What if it Just Works?
	Slide 20: Testing Software
	Slide 21: Test Plan: A Case Study
	Slide 22: Test Plan: A Case Study
	Slide 23: Test Plan: A Case Study
	Slide 24: Test Plan: A Case Study
	Slide 25: Representative Tests
	Slide 26: Representative Tests
	Slide 27: How Many “Different” Tests Are Here?
	Slide 28: How Many “Different” Tests Are Here?
	Slide 29: The Rule of Numbers
	Slide 30: Other Considerations
	Slide 31: Other Considerations
	Slide 32: Running Example
	Slide 33: Test Scripts: Automating Testing
	Slide 34: Unit Test: An Automated Test Script
	Slide 35: Testing last_name_first(n)
	Slide 36: Testing last_name_first(n)
	Slide 37: Testing last_name_first(n)
	Slide 38: Testing Multiple Functions
	Slide 39: Test Procedure
	Slide 40: Test Procedure

