Recall Our Problem

11/24/25

 Both insertion, selection sort are nested loops
= Outer loop over each element to sort
= Inner loop to put next element in place
= Each loop is n steps. nXn=n?
» To do better we must e/iminate a loop
= But how do we do that?
= What is like a loop? Recursion!

= First need an intermediate algorithm

The Partition Algorithm

« Given a list segment b[h..k] with some value x in b[h]:
h k
Start: b ‘ X ‘ ? ‘

* Swap elements of b[h. k] to get this answer
h

i+l k
Goal: b ‘ <=x ‘x \ >=x ‘
h k
change: b 354162381
h ; « |* xis called the pivot value
into bl121354638 = X is not a program variable
i k = denotes value initially in b[h]

h
or bl123134568

Designing the Partition Algorithm

* Given a list b[h..k] with some value x in b[h]:
h k

Start: b ‘ X ‘ ? ‘

* Swap elements of b[h..k] to get this answer
h

Implementating the Partition Algorithm

iitl k

Goal: b ‘ <=x ‘x ‘ >=x ‘

h i i k

In-Progress: b ‘ <=x ‘x ‘ ? ‘ >=x ‘

Indices b, h important!

Might partition only part

def partition(b, h, k):
""Partition list b[h..k] around a pivot x = b[h]""
i=h;j=k+1; x=blh]

while i <j1:
ifbfi+1] >=x: partition(b,h,k), not partition(b[h:k+1])

Move to end of block.

swap(b,i+15-1)

j=j-1 ‘We want to partition the original list

Remember, slicing always copies the list!

else: #Db[i+]1]<x
swap(b,i,i+1)
i=i+1

return i

Partition Algorithm Implementation

def partition(b, h, k): <=x|x 2 >=x

"Partition list b{h.k] around a pivot x = b[h]"" h i |it+l j k
1=h;j=k+l; x=bih] [12]3]1 5 of6 3 8]
while i <j1: h o >i il k

Move to end of block. RA

swap(b,i+1,j-1) h i = K

j=j-1

elsJe: J# bli+l] <x

swap(b,i,i+1) ~

i=i+1 h >ij k
return i A

Why is this Useful?

» Will use this algorithm to replace inner loop
= The inner loop cost us n swaps every time
* Can this reduce the number of swaps?
= Worst case is k-h swaps
= This is n if partitioning the whole list
= But less if only partitioning part
* Idea: Break up list and partition only part?

= This is Divide-and-Conquer!

11/24/25

Sorting with Partitions QuickSort
* Given a list segment b[h..k] with some value x in b[h]: def quick_sort(b, b, k): * Worst Case:
h k array already sorted

""Sort the array fragment b[h. k]""
Start: b ‘ X ‘ ? ‘ . = Or almost sorted
if b[h..k] has fewer than elements:

= n? in that case
* Swap elemekllqts of blh. k] to get ithlsi flnswer . return

Average Case:
array is scrambled

Goal: b ‘ <y ‘ y‘ >=y ‘ x‘ >=x ‘ J = partition(b, b, k)

= nlog n in that case

b[h.j~1] <= blj] <= blj+1.k]

= Best sorting time!

Partition Recursively) . . # Sort b[h..j-1] and b[j+1.k] h k
Recursive partitions = sorting _) pre: b [x
= Called QuickSort (why???) quick_sort (b, b, j=1) h i k
= Popular, fast sorting technique quick_sort (b, j+1, k) post: b [<=y n —
7 8
So Does that Solve It? Can We Do Better?
» Worst case still seems bad! Still n? * Recursion seems to be the solution
= But only happens in small number of cases = Partitioned the list into two halves

= Just happens that case is common (already sorted) = Recursively sorted each half

* Can greatly reduce issue with randomization * How about a traditional divide-and-conquer?

= Swap start with random element in list

= Divide the list into two halves
= Now pivot is random and already sorted unlikely

= Recursively sort the two halves
h i k
Start:b‘x‘ ? ‘y‘ ? ‘

N * How do we do the last step?

= Combine the two sort halves

9 10

Merge Sort What Does Python Use?

def merge_sort(b, h, k): * Seems simpler than gsort * The sort() method is Timsort | Quicksort is 1959!
mngopt th f t b[h. K]"" = Straight-forward d&c . .
ort the array fragment blh. k] = Merge easy to implement = Invented by Tim Peters in 2002

if b[h..k] has fewer than 2 elements:

» What is the catch? = Combination of insertion sort and merge sort
return = Merge requires a copy . .
4 Divide and recurse « We did not allow copies * Why a combination of the two?

mid = (h+k)//2 " Copipile) e = Merge sort requires copies of the data

= But so does merge/partition
merge_sort (b, h, m) + nlogn ALWAYS = Copying pays off for large lists, but not small lists

merge_sort (b, m+1, k) = Insertion sort is not that slow on small lists

Proof beyond

Combine

scope of course = Balancing two properly still gives n log n
merge(b,h,mid k) # Merge halves into b

11 12

