
Searching & Sorting

Lecture 25

Announcements for This Lecture

Prelim 2 Assignments

• A6 still not graded
§ Will be done after break
§ Autograder is less reliable

• A7 is due Monday Dec. 8
§ Extensions are possible
§ Work on it during lab

11/20/25 Searching & Sorting 2

• Prelim, Dec 4 at 7:30
§ See webpage for rooms
§ Review Wed Dec. 1 (TBA)

• Material up to Nov. 18
§ Recursion + Loops + Classes
§ Does not include GUIs
§ Study guide is now posted

• Conflict with Prelim?
§ Use Prelim 2 Conflict

Linear Search

def linear_search(v,b):
 """Returns: first occurrence of v in b (-1 if not found)

Precond: b a list of number, v a number
 """
 # Loop variable
 i = 0
 while i < len(b) and b[i] != v:
 i = i + 1

 if i == len(b): # not found
 return -1
 return i

How many entries do
we have to look at?

11/20/25 Searching & Sorting 3

Linear Search

def linear_search(v,b):
 """Returns: first occurrence of v in b (-1 if not found)

Precond: b a list of number, v a number
 """
 # Loop variable
 i = 0
 while i < len(b) and b[i] != v:
 i = i + 1

 if i == len(b): # not found
 return -1
 return i

How many entries do
we have to look at?

All of them!

11/20/25 Searching & Sorting 4

Linear Search

def linear_search(v,b):
 """Returns: last occurrence of v in b (-1 if not found)

Precond: b a list of number, v a number
 """
 # Loop variable
 i = len(b)-1
 while i >= 0 and b[i] != v:
 i = i - 1

 # Equals -1 if not found
 return i

How many entries do
we have to look at?

All of them!

11/20/25 Searching & Sorting 5

Is There a Better Way?

• Thinking of number 0..100
§ You get to guess number
§ I tell you higher or lower
§ Continue until get it right

• Goal: Keep # guesses low
§ Use my answers to help

• Strategy?
§ Start guess in the middle
§ Answer eliminates half
§ Go to middle of remaining

0 10050

11/20/25 Searching & Sorting 6

Is There a Better Way?

• Thinking of number 0..100
§ You get to guess number
§ I tell you higher or lower
§ Continue until get it right

• Goal: Keep # guesses low
§ Use my answers to help

• Strategy?
§ Start guess in the middle
§ Answer eliminates half
§ Go to middle of remaining

0 10050

Higher!

11/20/25 Searching & Sorting 7

Is There a Better Way?

• Thinking of number 0..100
§ You get to guess number
§ I tell you higher or lower
§ Continue until get it right

• Goal: Keep # guesses low
§ Use my answers to help

• Strategy?
§ Start guess in the middle
§ Answer eliminates half
§ Go to middle of remaining

0 10050

Lower!

75

11/20/25 Searching & Sorting 8

Is There a Better Way?

• Thinking of number 0..100
§ You get to guess number
§ I tell you higher or lower
§ Continue until get it right

• Goal: Keep # guesses low
§ Use my answers to help

• Strategy?
§ Start guess in the middle
§ Answer eliminates half
§ Go to middle of remaining

0 10050

Higher!

7562

11/20/25 Searching & Sorting 9

Is There a Better Way?

• Thinking of number 0..100
§ You get to guess number
§ I tell you higher or lower
§ Continue until get it right

• Goal: Keep # guesses low
§ Use my answers to help

• Strategy?
§ Start guess in the middle
§ Answer eliminates half
§ Go to middle of remaining

0 10050

Correct!

68

11/20/25 Searching & Sorting 10

Binary Search

def binary_search(v,b):
 # Loop variable(s)
 i = 0, j = len(b)
 while i < j and b[i] != v:
 mid = (i+j)//2
 if b[mid] < v:
 i = mid+1
 elif b[mid] > v:
 j = mid
 else:
 return mid
 return -1 # not found

Requires that the
data is sorted!

But few checks!

11/20/25 Searching & Sorting 11

Observation About Sorting

• Sorting data can speed up searching
§ Sorting takes time, but do it once
§ Afterwards, can search many times

• Not just searching. Also speeds up
§ Duplicate elimination in data sets
§ Data compression
§ Physics computations in computer games

• Why it is a major area of computer science

11/20/25 Searching & Sorting 12

The Sorting Challenge

• Given: A list of numbers
• Goal: Sort those numbers using only

§ Iteration (while-loops or for-loops)
§ Comparisons (< or >)
§ Assignment statements

• Why? For proper analysis.
§ Methods/functions come with hidden costs
§ Everything above has no hidden costs
§ Each comparison or assignment is “1 step”

11/20/25 Searching & Sorting 13

This Requires Some Notation

• As the list is sorted…
§ Part of the list will be sorted
§ Part of the list will not be sorted

• Need a way to refer to portions of the list
§ Notation to refer to sorted/unsorted parts

• And have to do it without slicing!
§ Slicing makes a copy
§ Want to sort original list, not a copy

11/20/25 Searching & Sorting 14

This Requires Some Notation

• As the list is sorted…
§ Part of the list will be sorted
§ Part of the list will not be sorted

• Need a way to refer to portions of the list
§ Notation to refer to sorted/unsorted parts

• And have to do it without slicing!
§ Slicing makes a copy
§ Want to sort original list, not a copy

But we will be less formal
than in previous years!

11/20/25 Searching & Sorting 15

Range Notation

• m..n is a range containing n+1-m values
§ 2..5 contains 2, 3, 4, 5. Contains 5+1 – 2 = 4 values
§ 2..4 contains 2, 3, 4. Contains 4+1 – 2 = 3 values
§ 2..3 contains 2, 3. Contains 3+1 – 2 = 2 values
§ 2..2 contains 2. Contains 2+1 – 2 = 1 values
§ 2..1 contains ???

• The notation m..n, always implies that m <= n+1
§ So you can assume that even if we do not say it

§ If m = n+1, the range has 0 values

11/20/25 Searching & Sorting 16

Range Notation

• m..n is a range containing n+1-m values
§ 2..5 contains 2, 3, 4, 5. Contains 5+1 – 2 = 4 values
§ 2..4 contains 2, 3, 4. Contains 4+1 – 2 = 3 values
§ 2..3 contains 2, 3. Contains 3+1 – 2 = 2 values
§ 2..2 contains 2. Contains 2+1 – 2 = 1 values
§ 2..1 contains ???

• The notation m..n, always implies that m <= n+1
§ So you can assume that even if we do not say it

§ If m = n+1, the range has 0 values

Not the same
as range(m,n)

11/20/25 Searching & Sorting 17

Horizontal Notation

• Want a pictoral way to visualize this sorting
§ Represent the list as long rectangle
§ We saw this idea in divide-and-conquer

• Do not show individual boxes
§ Just dividing lines between regions
§ Label dividing lines with indices
§ But index is either left or right of dividing line

b
0 h k

h h+1

(h+1) – h = 1

11/20/25 Searching & Sorting 18

Horizontal Notation

• Label regions with properties
§ Example: Sorted or ???

§ b[0..k–1] is sorted
§ b[k..n-1] unknown (might be sorted)

• Picture allows us to track progress

b sorted ???
0 k n

11/20/25 Searching & Sorting 19

Visualizing Sorting

?
0 n

Start: b

sorted
0 n

Goal: b

sorted
0 i n

In-Progress: b ?

11/20/25 Searching & Sorting 20

Insertion Sort

i = 0
while i < n:
 # Push b[i] down into its
 # sorted position in b[0..i]
 i = i+1

2 4 4 6 6 7 5
0 i

2 4 4 5 6 6 7
0 i

Remember the restrictions!

sorted
0 i n

b ?

11/20/25 Searching & Sorting 21

Insertion Sort: Moving into Position
i = 0
while i < n:
 push_down(b,i)
 i = i+1

def push_down(b, i):
j = i

 while j > 0:
 if b[j-1] > b[j]:
 swap(b,j-1,j)
 j = j-1

2 4 4 6 6 7 5
0 i

swap shown in the
lecture about lists

11/20/25 Searching & Sorting 22

Insertion Sort: Moving into Position
i = 0
while i < n:
 push_down(b,i)
 i = i+1

def push_down(b, i):
j = i

 while j > 0:
 if b[j-1] > b[j]:
 swap(b,j-1,j)
 j = j-1

2 4 4 6 6 7 5
0 i

2 4 4 6 6 5 7
0 i

swap shown in the
lecture about lists

11/20/25 Searching & Sorting 23

Insertion Sort: Moving into Position
i = 0
while i < n:
 push_down(b,i)
 i = i+1

def push_down(b, i):
j = i

 while j > 0:
 if b[j-1] > b[j]:
 swap(b,j-1,j)
 j = j-1

2 4 4 6 6 7 5
0 i

2 4 4 6 6 5 7
0 i

2 4 4 6 5 6 7
0 i

swap shown in the
lecture about lists

11/20/25 Searching & Sorting 24

Insertion Sort: Moving into Position
i = 0
while i < n:
 push_down(b,i)
 i = i+1

def push_down(b, i):
j = i

 while j > 0:
 if b[j-1] > b[j]:
 swap(b,j-1,j)
 j = j-1

2 4 4 6 6 7 5
0 i

2 4 4 6 6 5 7
0 i

2 4 4 6 5 6 7
0 i

2 4 4 5 6 6 7
0 i

swap shown in the
lecture about lists

11/20/25 Searching & Sorting 25

The Importance of Helper Functions

 i = 0
 while i < n:
 push_down(b,i)
 i = i+1

 def push_down(b, i):
 j = i

 while j > 0:
 if b[j-1] > b[j]:
 swap(b,j-1,j)
 j = j-1

 i = 0
 while i < n:
 j = i
 while j > 0:
 if b[j-1] > b[j]:
 temp = b[j]
 b[j] = b[j-1]
 b[j-1] = temp
 j = j -1
 i = i +1

VS

Can you understand
all this code below?

11/20/25 Searching & Sorting 26

Measuring Performance

• Performance is a tricky thing to measure
§ Different computers run at different speeds
§ Memory also has a major effect as well

• Need an independent way to measure
§ Measure in terms of “basic steps”
§ Example: Searching counted # of checks

• For sorting, we measure in terms of swaps
§ Three assignment statements
§ Present in all sorting algorithms

11/20/25 Searching & Sorting 27

Insertion Sort: Performance

def push_down(b, i):
 """Push value at position i into
 sorted position in b[0..i-1]"""
 j = i
 while j > 0:
 if b[j-1] > b[j]:
 swap(b,j-1,j)
 j = j-1

• b[0..i-1]: i elements
• Worst case:

§ i = 0: 0 swaps
§ i = 1: 1 swap
§ i = 2: 2 swaps

• Pushdown is in a loop
§ Called for i in 0..n
§ i swaps each time

Total Swaps: 0 + 1 + 2 + 3 + … (n-1) = (n-1)*n/2 = (n2-n)/2
11/20/25 Searching & Sorting 28

Insertion Sort: Performance

def push_down(b, i):
 """Push value at position i into
 sorted position in b[0..i-1]"""
 j = i
 while j > 0:
 if b[j-1] > b[j]:
 swap(b,j-1,j)
 j = j-1

• b[0..i-1]: i elements
• Worst case:

§ i = 0: 0 swaps
§ i = 1: 1 swap
§ i = 2: 2 swaps

• Pushdown is in a loop
§ Called for i in 0..n
§ i swaps each time

Total Swaps: 0 + 1 + 2 + 3 + … (n-1) = (n-1)*n/2 = (n2-n)/2

Insertion sort is
an n2 algorithm

11/20/25 Searching & Sorting 29

Algorithm “Complexity”
• Given: a list of length n and a problem to solve
• Complexity: rough number of steps to solve worst case
• Suppose we can compute 1000 operations a second:

Complexity n=10 n=100 n=1000
log n 0.003 s 0.006 s 0.01 s

n 0.01 s 0.1 s 1 s
n log n 0.016 s 0.32 s 4.79 s

n2 0.1 s 10 s 16.7 m
n3 1 s 16.7 m 11.6 d
2n 1 s 4x1019 y 3x10290 y

11/20/25 Searching & Sorting 30

Algorithm “Complexity”
• Given: a list of length n and a problem to solve
• Complexity: rough number of steps to solve worst case
• Suppose we can compute 1000 operations a second:

Complexity n=10 n=100 n=1000
log n 0.003 s 0.006 s 0.01 s

n 0.01 s 0.1 s 1 s
n log n 0.016 s 0.32 s 4.79 s

n2 0.1 s 10 s 16.7 m
n3 1 s 16.7 m 11.6 d
2n 1 s 4x1019 y 3x10290 y

Binary Search

Linear Search

Insertion Sort

11/20/25 Searching & Sorting 31

Algorithm “Complexity”
• Given: a list of length n and a problem to solve
• Complexity: rough number of steps to solve worst case
• Suppose we can compute 1000 operations a second:

Complexity n=10 n=100 n=1000
log n 0.003 s 0.006 s 0.01 s

n 0.01 s 0.1 s 1 s
n log n 0.016 s 0.32 s 4.79 s

n2 0.1 s 10 s 16.7 m
n3 1 s 16.7 m 11.6 d
2n 1 s 4x1019 y 3x10290 y

Major Topic in 2110:
Beyond scope of this course

11/20/25 Searching & Sorting 32

Insertion Sort is Not Great

• Typically n2 is okay, but not great
§ Will perform horribly on large data
§ Very bad when performance critical (games)

• We would like to do better than this
§ Can we get n swaps (no)?
§ How about n log n (maybe)

• This will require a new algorithm
§ Let’s return to horizontal notation

11/20/25 Searching & Sorting 33

A New Algorthm

?
0 n

Start: b

sorted
0 n

Goal: b

sorted, ≤ b[i..]
0 i n

In-Progress: b ≥ b[0..i-1]

First segment always
contains smaller values

11/20/25 Searching & Sorting 34

Selection Sort

i = 0
while i < n:
 # Find minimum in b[i..]
 # Move it to position i
 i = i+1

sorted , ≤ b[i..]
0 i n

b ≥ b[0..i-1]

2 4 4 6 6 8 9 9 7 8 9
i n

2 4 4 6 6 7 9 9 8 8 9
i n

2 4 4 6 6 7 9 9 8 8 9
i n

Remember the restrictions!
11/20/25 Searching & Sorting 35

Selection Sort

i = 0
while i < n:
 j = index of min of b[i..n-1]
 swap(b,i,j)
 i = i+1

2 4 4 6 6 8 9 9 7 8 9
i n

2 4 4 6 6 7 9 9 8 8 9
i n

2 4 4 6 6 7 9 9 8 8 9
i n

How fast is this?

11/20/25 Searching & Sorting 36

Selection Sort

i = 0
while i < n:
 j = index of min of b[i..n-1]
 swap(b,i,j)
 i = i+1

How fast is this?

11/20/25 Searching & Sorting 37

A: log n (Binary Search)
B: n (Linear Search)
C: n log n (?????)
D: n2 (Insertion Sort)
E: I have no clue

Selection Sort

i = 0
while i < n:
 j = index of min of b[i..n-1]
 swap(b,i,j)
 i = i+1

2 4 4 6 6 8 9 9 7 8 9
i n

2 4 4 6 6 7 9 9 8 8 9
i n

2 4 4 6 6 7 9 9 8 8 9
i n

This is also n2!

This is n steps

11/20/25 Searching & Sorting 38

What is the Problem?

• Both insertion, selection sort are nested loops
§ Outer loop over each element to sort
§ Inner loop to put next element in place
§ Each loop is n steps. n×n = n2

• To do better we must eliminate a loop
§ But how do we do that?
§ What is like a loop? Recursion!
§ Will see how to do this next lecture

11/20/25 Searching & Sorting 39

