
11/16/25

1

Linear Search

def linear_search(v,b):
 """Returns: first occurrence of v in b (-1 if not found)

Precond: b a list of number, v a number
 """
 # Loop variable
 i = 0
 while i < len(b) and b[i] != v:
 i = i + 1

 if i == len(b): # not found
 return -1
 return i

How many entries do
we have to look at?

All of them!

1

Binary Search

def binary_search(v,b):
 # Loop variable(s)
 i = 0, j = len(b)
 while i < j and b[i] != v:
 mid = (i+j)//2
 if b[mid] < v:
 j = mid
 elif b[mid] > v:
 i = mid
 else:
 return mid
 return -1 # not found

Requires that the
data is sorted!

But few checks!

2

The Sorting Challenge

• Given: A list of numbers
• Goal: Sort those numbers using only

§ Iteration (while-loops or for-loops)
§ Comparisons (< or >)
§ Assignment statements

• Why? For proper analysis.
§ Methods/functions come with hidden costs
§ Everything above has no hidden costs
§ Each comparison or assignment is “1 step”

3

Horizontal Notation

• Want a pictoral way to visualize this sorting
§ Represent the list as long rectangle
§ We saw this idea in divide-and-conquer

• Do not show individual boxes
§ Just dividing lines between regions
§ Label dividing lines with indices
§ But index is either left or right of dividing line

b
0 h k

h h+1

(h+1) – h = 1

4

Visualizing Sorting

?
0 n

Start: b

sorted
0 n

Goal: b

sorted
0 i n

In-Progress: b ?

5

Insertion Sort

i = 0
while i < n:
 # Push b[i] down into its
 # sorted position in b[0..i]
 i = i+1

2 4 4 6 6 7 5
0 i

2 4 4 5 6 6 7
0 i

Remember the restrictions!

sorted
0 i n

b ?

6

11/16/25

2

Insertion Sort: Moving into Position
i = 0
while i < n:
 push_down(b,i)
 i = i+1

def push_down(b, i):
j = i

 while j > 0:
 if b[j-1] > b[j]:
 swap(b,j-1,j)
 j = j-1

2 4 4 6 6 7 5
0 i

2 4 4 6 6 5 7
0 i

2 4 4 6 5 6 7
0 i

2 4 4 5 6 6 7
0 i

swap shown in the
lecture about lists

7

Insertion Sort: Performance

def push_down(b, i):
 """Push value at position i into
 sorted position in b[0..i-1]"""
 j = i
 while j > 0:
 if b[j-1] > b[j]:
 swap(b,j-1,j)
 j = j-1

• b[0..i-1]: i elements
• Worst case:

§ i = 0: 0 swaps
§ i = 1: 1 swap
§ i = 2: 2 swaps

• Pushdown is in a loop
§ Called for i in 0..n
§ i swaps each time

Total Swaps: 0 + 1 + 2 + 3 + … (n-1) = (n-1)*n/2 = (n2-n)/2

Insertion sort is
an n2 algorithm

8

Algorithm “Complexity”

• Given: a list of length n and a problem to solve
• Complexity: rough number of steps to solve worst case
• Suppose we can compute 1000 operations a second:

Complexity n=10 n=100 n=1000
log n 0.003 s 0.006 s 0.01 s

n 0.01 s 0.1 s 1 s
n log n 0.016 s 0.32 s 4.79 s

n2 0.1 s 10 s 16.7 m
n3 1 s 16.7 m 11.6 d
2n 1 s 4x1019 y 3x10290 y

9

A New Algorthm

?
0 n

Start: b

sorted
0 n

Goal: b

sorted, ≤ b[i..]
0 i n

In-Progress: b ≥ b[0..i-1]

First segment always
contains smaller values

10

Selection Sort

i = 0
while i < n:
 # Find minimum in b[i..]
 # Move it to position i
 i = i+1

sorted , ≤ b[i..]
0 i n

b ≥ b[0..i-1]

2 4 4 6 6 8 9 9 7 8 9
i n

2 4 4 6 6 7 9 9 8 8 9
i n

2 4 4 6 6 7 9 9 8 8 9
i n

Remember the restrictions!

11

What is the Problem?

• Both insertion, selection sort are nested loops
§ Outer loop over each element to sort
§ Inner loop to put next element in place
§ Each loop is n steps. n×n = n2

• To do better we must eliminate a loop
§ But how do we do that?
§ What is like a loop? Recursion!
§ Will see how to do this next lecture

12

