11/16/25

Linear Search

Binary Search

def linear_search(v,b):
""Returns: first occurrence of v in b (-1 if not found)
Precond: b a list of number, v a number

Loop variable How many entries do

1=0 we have to look at?

while i < len(b) and b[i] I=v:

=i+l

== lono: st found - All of them!
return -1

return i

def binary_search(v,b):

Loop variable(s)

i=0,j=1len(b)

while i <j and b[i] I=v:

Requires that the
data is sorted!

mid = (i+))//2

if b{mid] < v:
| j=mid

elif b[mid] > v:

else:

‘ return mid

return -1 # not found

The Sorting Challenge

* Given: A list of numbers
* Goal: Sort those numbers using only
= Jteration (while-loops or for-loops)
= Comparisons (< or >)
= Assignment statements
* Why? For proper analysis.
= Methods/functions come with hidden costs
= Everything above has no hidden costs
= Each comparison or assignment is “1 step”

Horizontal Notation

» Want a pictoral way to visualize this sorting
= Represent the list as long rectangle

= We saw this idea in divide-and-conquer
0 h K

b

e h htl
* Do not show individual boxes

= Just dividing lines between regions
= Label dividing lines with indices
= But index is either left or right of dividing line

(h+)-h=1

Visualizing Sorting

0

Start: b ‘ ?
0 n
Goal: b ‘ sorted
0 i n
In-Progress: b ‘ sorted ?

4
Insertion Sort
0 i n
b ‘ sorted ‘ ?

i=0

while i < n: 0 i
Push b[i] down into its
sorted position in b[0..i] 0 i
.
i=i+l

Remember the restrictions!
6

11/16/25

Insertion Sort: Moving into Position

1=0 0 i
il .<n
push_down(b,i)
| i=i+l 0 i
7

244 5

*!

def push_down(b, i):

[.
j=1 0 i
while] > 0:

swap shown in the

‘ if b[j-11 > b[jl: lecture about lists
0 i

| ovpog1p

o j=il

Insertion Sort: Performance

def push_down(b, i):
""Push value at position i into
sorted position in b[0..i-1]""

e b[0..i-1]: 1 elements
* Worst case:
= i=0: 0 swaps

j=.i) = i=1:1swap
while j > 0: = i=2:2swaps
if blj-1] > b[jl:

* Pushdown is in a loop
swap(bj-1j
‘ p(FLD = Called foriin 0..n

=11 - -
= Insertion sortis | = i swaps each time
an n? algorithm

[Total Swaps: 0+ 1+2+3 + ... (n-1) = (n-1)*n/2 = (n>n)2 |

Algorithm “Complexity”

 Given: a list of length n and a problem to solve
» Complexity: rough number of steps to solve worst case
* Suppose we can compute 1000 operations a second:

Complsit =100

logn 0.003 s 0.006 s 0.01s
n 0.01s 0.1s 1s
nlogn 0.016 s 0.32s 479 s
n? 0.1s 10s 16.7 m
n? ls 16.7m 11.6d
20 ls 4x10y 3x1020y

8
A New Algorthm
0 n
Start: b ‘ ? ‘
0 n
Goal: b ‘ sorted ‘
0 i n
In-Progress: b | sorted, <bi.] | =b[0.il] |
First segment always
contains smaller values
10

Selection Sort

i n
b [sorted,<bfi.] | =bo.i-l] |

1 n

1=0 24466[8997809)]

while i <n: i n

Find minimum in b[i..] 24466[/799889]

Move it to position i
i=i+l

i n
244667[99889]

Remember the restrictions!

What is the Problem?

* Both insertion, selection sort are nested loops
= Outer loop over each element to sort
= Inner loop to put next element in place
= Each loop is n steps. nXn=n?
* To do better we must e/iminate a loop
= But how do we do that?
= What is like a loop? Recursion!
= Will see how to do this next lecture

11

12

