Lecture 24

Advanced
Error Handling



Announcements for This Lecture

Prelim 2

Assignments

e Prelim, Dec 4th at 7:30

= See webpage for rooms
= Review Mon Dec. 1 (TBA)
* Material up to Today
= Recursion + Loops + Classes
= Does not include GUIs
= Study guide is now posted
* Conflict with Prelim?

= Use Prelim 2 Conflict form

* A5 1s now graded
* Mean: 46.7 Median: 48
= A: 47 (73%), B: 40 (27%)
* A6 graded after break

« Keep working on A7

= Make a big push this week
* Time in lab Thu/Fri/Tues!
= Get the frog moving

11/18/25 Advanced Error Handling



Error Types in Python

def foo(): def foo():
assert 1 == 3, 'My error' x=9/0
>>> f00() >>> foo()

[AssertionErrorWeroDivisionError: |1'nteger
division or modulo by zero

Class Names

11/18/25 Advanced Error Handling



Error Types in Python

def foo(): ' . I
Information about an error
assert 1 ==&, My error is stored inside an object.

The error type 1s the class
of the error object.

\
>>> f00() >>> foo()

[AssertionErrorWeroDivisionError: |1'nteger
division or modulo by zero

Class Names

s

11/18/25 Advanced Error Handling



Error Types in Python

« All errors are instances of class BaseException

e This allows us to organize them in a hierarchy

BaseException

1

Exception

T

AssertionError

11/18/25 Advanced Error Handling

id4

AssertionError

'My error’

— means “extends”
or “i1s an instance of”




Error Types in Python

« All errors are instances of class BaseException

e This allows us to organize them in a hierarchy

BaseException
t I
All of these are
actually empty!
Why?
I

AssertionError

v

11/18/25 Advanced Error Handling

id4

AssertionError

'My error’

— means “extends”
or “i1s an instance of”




Python Error Type Hierarchy

BaseException
Argument has Argument has
wrong type wrong value
SystemEXxit Exception (e.g. float([1])) (e.g. float(‘a’))

AssertionError || AttributeError || ArithmeticError || IOError || TypeError || ValueError

I

ZeroDivisionError || OverflowError

http://docs.python.org/

Wh t ?
library/exceptions.html [ Y ORIy SHOT PSS ]

11/18/25 Advanced Error Handling 7



Recall: Recovering from Errors

* try-except blocks allow us to recover from errors
* Do the code that 1s 1n the try-block

= Once an error occurs, jump to the except

 Example:
try:

. might have an error
val = input() # get number from user
x = float(val) # convert string to float /
print('The next number is +str(x+1))

except:
' i tes if h
‘ pmnt('Hey] That is not a number! ')/ executes 1t have an error

11/18/25 Advanced Error Handling 8



Handling Errors by Type

* try-except blocks can be restricted to specific errors
* Do except if error 1s an instance of that type

= [f error not an instance, do not recover

* Example: May have
try: KeyboardInterrupt

val = input() # get number from user «—
x = float(val) # convert string to float <

—

print('The next number is +str(x+1)) May have ValueError
except ValueError: Only recovers ValueError.
- print('Hey! That is not a number! Y€ Other errors ignored.

11/18/25 Advanced Error Handling 9



Handling Errors by Type

* try-except blocks can be restricted to specific errors
* Doe except if error 1s an instance of that type

= [f error not an instance, do not recover

* Example: May have
try: KeyboardInterrupt

val = input() # get number from user «—
x = float(val) # convert string to floal <«

_—

print('The next number is '+str(x+1)) May have ValueError
except KeyboardInterrupt: Only recovers
. _ KeyboardInterrupt.
‘ print('Check your keyboard!") €= Other errors ignored.

11/18/25 Advanced Error Handling 10



Handling Errors by Type

* try-except can put the error 1n a variable

 Example:
try:

val = input() # get number from user

x = float(val) # convert string to float

print('The next number is +str(x+1))

except ValueError as e:

(Some Error subclasses
print(e.args[0]) have more attributes

print('Hey! That is not a number!')

11/18/25 Advanced Error Handling 11



Creating Errors in Python

e (Create errors with raise def foo(x):

= Usage: raise <exp> assert x < &, 'My error'
= exp evaluates to an object \
= An instance of Exception Ident1ca1 ]

e Tailor r t
Or your error types def foo(x) /
= ValueError: Bad value
if x >=2:

* TypeError: Bad type
m = 'My error'

 Still prefer asserts for
preconditions, however err = Assertionkrror(m)

= Compact and easy to read raise err

11/18/25 Advanced Error Handling 12



Creating Errors in Python

e (Create errors with raise def foo(x):

= Usage: raise <exp> assert x < &, 'My error'
= exp evaluates to an object \
= An instance of Exception Ident1ca1 ]

 Tailor your error types def f0o(%): /

* ValueError: Bad value
* TypeError: Bad type

 Still prefer asserts for
preconditions, however

if x >=2:
m = 'My error'
err = ValueError(m)

= Compact and easy to read raise err

11/18/25

Advanced Error Handling

13



Raising and Try-Except

def foo():

x=0

try:

raise Exception()
X =2

except Exception:
X=38

return x

11/18/25

* The value of foo()?

Z W o

o value. It stops!

A:
B:
C:
D:
E: I don’t know

Advanced Error Handling

14



Raising and Try-Except

def foo():

x=0

try:

raise Exception()
X =2

except Exception:
X=38

return x

11/18/25

* The value of foo()?

A:
B:
C:
D:
E:

0

2

3 Correct
N

o value. It stops!
I don’t know

Advanced Error Handling

15



Raising and Try-Except

def foo(): * The value of foo()?

x=0
try: A: 0

raise Exception() B:2

% =9 C:3

, D: No value. It stops!

except BaseException: E- T don’t know

X=38
return x

11/18/25 Advanced Error Handling

16



Raising and Try-Except

det 100(): » The value of f00()?
x=0
try: A: 0
raise Exception() B: 2
x =9 C:3 Correct
except BaseException: D: No value. It stops!
' E: I don’t know
X=23
return x

11/18/25 Advanced Error Handling

17



Raising and Try-Except

det f00(); » The value of foo()?
x=0
try: A: 0
raise Exception() B: 2
x =2 C:3 |
except Assertionkrror: g:: IN Cfoz?tlﬁl;og stops
x=34
return x

11/18/25 Advanced Error Handling

18



Raising and Try-Except

def foo(): * The value of foo()?
x=0
try: A: 0
raise Exception() B: 2
X =9 C:3
 AssertionError: D: No value. Correct
except AssertionError: E- T don’t know
X=24
return x Python uses isinstance
to match Error types

11/18/25 Advanced Error Handling 19



Creating Your Own Exceptions

class CustomError(Exception):

"""An instance is a custom exception"""

pass

This 1s all you need!

= No extra attributes
= No extra methods
= No constructors

Inherit everything

11/18/25

Advanced Error Handling

.

Only 1issues 1s choice

of parent error class.

Use Exception 1f you
are unsure what.

\

/




Case Study: Files

* Can read the contents of any file with open()
= Returns a file object with method read()

= Method read() returns contents as a string

= Remember to close() file when done

* There are SO many errors that can happen

= FileNotFoundError: File does not exit
= PermigssionError: You are not allowed to read it

= Other errors possible when processing data

11/18/25 Advanced Error Handling

21



Recall: JSON Files

{
"wind" : {
"speed" : 13.0,
"crosswind" : 5.0
!5
"sky" [
{
"cover" : "clouds",
"type" : "broken",
"height" : 1200.0
!5
{
"type" : "overcast",
"height" : 1800.0
}
]
}

11/18/25

* Look like a nested dict
* Butread 1n as a string
= You have to convert it

* Python module json

= Function loads()
Converts str -> dict

= Function dumps()
Convert dict -> str

 (Conversion 1s sensitive

" Stray commas crash it

Advanced Error Handling 22



Reading a JSON File

def read_json(fname): | Open file
try: with name Note that we can

file = open(fname)

| chain excepts like
d.a,ta, = file.read()| Close file an if-elif statement
file.close() when done

result = json.loads(data)

return result Could not
except FileNotFoundError: <E find file

print(fname +' not found')<(\ JSON contents |
except JsonDecodeError: are not valid

print(fname +' is invalid’) ’
return None ﬁ If failed 1

11/18/25 Advanced Error Handling 23




Reading a File in General

def read_foo(fname):

try: All the work 18
file = open(fname)

data = file.read()
file.close()

result = convert(data) Custom helper

return result for this file type
except FileNotFoundError:

print(fname +' not found") <E Error specific }
except MyConversionError: to the file format

print(fname +' is invalid")
return None

In conversion step

11/18/25 Advanced Error Handling

24



Aside: Pathnames

 Files obey the same rule as other modules
= To read a file, it must be 1n the same folder
= Otherwise, you must use a pathname for file

* Relative path: directions from current folder

= macOS: '../../lecR’/file.txt' Like navigating
= Windows: '.\.\lec22\file.txt' et

* Absolute path: directions that work anywhere
= macOS: '/Users/white/cs1110/lectR3/file.txt'
= Windows: 'C:\Users\white\cs1110\lect22\file.txt'

11/18/25 Advanced Error Handling

25



Aside: Pathnames

* Files obey the same rule as other modules
= To read a file, it must be 1n the same folder

= Otherwise, you m{ Note the change |e for file

* Relative path: dirlmrgggélrrent folder
= macOS: '../../lec22/file.txt
= Windows: ".\..\lec22\file.txt' [EYULLUELEIE

* Absolute path: directions that work anywhere

= macOS: '/Users/white/cs1110/lectR3/file.txt'
= Windows: 'C:\Users\white\cs1110\lect22\file.txt'

11/18/25 Advanced Error Handling

26



Pathnames are OS Specific

» This makes reading files harder
* May work on Windows but crash on macOS!

" Yet another error message we need to handle

* Solution: Use the module os.path
* Builds a pathname string for current os
 Example: os.path(’.., 'es1110, lecR?’, 'file.txt’)
* macOS: "../cs1110/lecR’/file.txt'
= Windows: '..\cs1110\lec22\file.txt’

» Absolute paths are a little trickier, but similar

11/18/25 Advanced Error Handling

27



Final Word on Error Handling

* Versions of try-except exist in most languages
= Java, C++, C#, Objective-C all have it

* But those languages try to minimize 1ts use

= (Give application a way to crash “nicely”
= Because processing a try-except it quite slow
* Python has a very different philosophy
= Python 1s sort-of slow; exceptions are not slower
= It 1s okay to use try-except all the time

= Encourages its use as much as if-statements

11/18/25 Advanced Error Handling

28



Final Word on Error Handling

* Versions of try-except exist in most languages
= Java, C++, C#, Objective-C all have it
» But those languages try to minimize 1ts use

= Give application a way to crash “nicely”

= Because processing a try-except it quite slow

* Python ha;
= Python 1

\hy

Developers refer to codin
p & ot slower

TRIpORN  styles unique to python

as pythonic programming

= Encourad .ents

11/18/25 Advanced Error Handling

29



