
GUI Applications

Lecture 23

Announcements for This Lecture

Assignments Video Lessons

• Lesson 24 for today

• Lessons 26, 27 for Tues

• Last material on 2nd exam

11/13/25 2GUI Applications

• A5 currently being graded

▪ Will have results this Sat

• A6 is due TOMORROW

▪ Worth 8% of your grade

▪ Remember to fill in Survey

• A7 posted TOMORROW

▪ Based on today’s lecture!

▪ Due December 8th (last day)

▪ Minor extensions possible

A Standard GUI Application

Update

Draw

Animates the

application,

like a movie

11/13/25 GUI Applications 3

A Standard GUI Application

Update

Draw

Animates the

application,

like a movie

Check for user input

Process user input

Update the objects

11/13/25 GUI Applications 4

A Standard GUI Application

Update

Draw
Update display/view

No change to objects

Animates the

application,

like a movie

Check for user input

Process user input

Update the objects

11/13/25 GUI Applications 5

Restriction set by

graphics cards

The Animation Frame

11/13/25 GUI Applications 6

Update

Draw

One frame

Must We Write this Loop Each Time?

while program_is_running:

 # Get information from

mouse/keyboard

 # Handled by OS/GUI libraries

 # Your code goes here

 # Draw stuff on the screen

 # Handled by OS/GUI libraries
11/13/25 GUI Applications 7

Must We Write this Loop Each Time?

while program_is_running:

 # Get information from

mouse/keyboard

 # Handled by OS/GUI libraries

 # Your code goes here

 # Draw stuff on the screen

 # Handled by OS/GUI libraries
11/13/25 GUI Applications 8

Why do we need to

write this each time?

Would like to

“plug in” code

Must We Write this Loop Each Time?

while program_is_running:

 # Get information from

mouse/keyboard

 # Handled by OS/GUI libraries

 # Your code goes here

 application.update()

 # Draw stuff on the screen

 # Handled by OS/GUI libraries
11/13/25 GUI Applications 9

Custom Application class

with its own attributes

Method call

(for loop body) • Put loop BODY

 in an app class.

• OS/GUI handles

 everything else.

But There is a Catch

while program_is_running:

 # Get information from

mouse/keyboard

 # Handled by OS/GUI libraries

 # Your code goes here

 application.update()

 # Draw stuff on the screen

 # Handled by OS/GUI libraries
11/13/25 GUI Applications 10

This creates

a call frame

All its variables are

erased when done

Attributes = Loop Variables

Normal Loops

 x = 0

 i = 2

 # x = sum of
squares of 2..i-1

 while i <= 5:

 x = x + i*i

 i = i +1

 # x = sum of

squares of 2..5

Application

while

program_running:

 # Get input

 # Your code

called here

application.update()

 # Draw
11/13/25 GUI Applications 11

Variables “external”

to the loop body
Attributes are the

“external” variables

Programming Animation

Intra-Frame

• Computation within frame

▪ Only need current frame

• Example: Collisions

▪ Need current position

▪ Use to check for overlap

• Can use local variables

▪ All lost at update() end

▪ But no longer need them

11/13/25 GUI Applications 12

Programming Animation

Inter-Frame

• Computation across frames

▪ Use values from last frame

• Example: Movement

▪ Need old position/velocity

▪ Compute next position

• Requires attributes

▪ Attributes never deleted

▪ Remain after update()

ends

11/13/25 GUI Applications 13

Previous

frame

Current

frame

Programming Animation

Intra-Frame

• Computation within frame

▪ Only need current frame

• Example: Collisions

▪ Need current position

▪ Use to check for overlap

• Can use local variables

▪ All lost at update() end

▪ But no longer need them

Inter-Frame

• Computation across frames

▪ Use values from last frame

• Example: Movement

▪ Need old position/velocity

▪ Compute next position

• Requires attributes

▪ Attributes never deleted

▪ Remain after update()

ends

11/13/25 GUI Applications 14

Variables and the Loop

while program_is_running:

 # Get information from

mouse/keyboard

 # Handled by OS/GUI libraries

 # Your code goes here

 application.update()

 # Draw stuff on the screen

 # Handled by OS/GUI libraries
11/13/25 GUI Applications 15

Local variables erased.

But attributes persist.

The Actual Game Loop

Constructor

game = GameApp(…)

…

game.start() #Loop initialization

while program_running:

 # Get input

 # Your code goes here

 game.update(time_elapsed)

 game.draw()

11/13/25 GUI Applications 16

Too early to initialize

everything

Actual loop

initialization

Separate update()

and draw()

methods

Designing a Game Class: Animation

class Animation(game2d.GameApp):

 """App to animate an ellipse in a
circle."""

 def start(self):

 """Initializes the game loop."""

 …

 def update(self,dt):

 """Changes the ellipse position."""

 …

 def draw(self):

 """Draws the ellipse"""

 …

11/13/25 GUI Applications 17

See
animation.py

Designing a Game Class: Animation

class Animation(game2d.GameApp):

 """App to animate an ellipse in a
circle."""

 def start(self):

 """Initializes the game loop."""

 …

 def update(self,dt):

 """Changes the ellipse position."""

 …

 def draw(self):

 """Draws the ellipse"""

 …

11/13/25 GUI Applications 18

See
animation.pyParent class that

does hard stuff

Designing a Game Class: Animation

class Animation(game2d.GameApp):

 """App to animate an ellipse in a
circle."""

 def start(self):

 """Initializes the game loop."""

 …

 def update(self,dt):

 """Changes the ellipse position."""

 …

 def draw(self):

 """Draws the ellipse"""

 …

11/13/25 GUI Applications 19

See
animation.py

Loop initialization

Do NOT use
__init__

Loop body

Use method draw()

defined in GObject

Parent class that

does hard stuff

Interframe Computation: Touch

• Works like an Etch-a-Sketch

▪ User draws by touching

▪ Checks position each frame

▪ Draws lines between touches

• Uses attribute touch in

GInput

▪ The mouse press position

▪ Or None if not pressed

▪ Access with

self.input.touch

• But we also need last touch!

▪ Forgot if we do not store it

▪ Purpose of attribute last
11/13/25 GUI Applications 20

See
touch.py

Previous

Touch

Current

Touch

Line segment = 2 points

State: Changing What the Loop Does

• State: Current loop activity

▪ Playing game vs. pausing

▪ Ball countdown vs. serve

• Add an attribute state

▪ Method update() checks

state

▪ Executes correct helper

• How do we store state?

▪ State is an enumeration;

one of several fixed values

▪ Implemented as an int
11/13/25 GUI Applications 21

See
state.py

State ANIMATE_CIRCLE

State ANIMATE_HORIZONTAL

States and the Class Invariant

• Think of each state as a mini-program

▪ Has its own update functionality/logic

▪ Usually separated out as helper to update

▪ update uses ifs to send to correct helper

• Need to include in the class invariant

▪ Some attributes only used in certain states

▪ What values must they have in other states?

• Also need rules for when we switch states

▪ Could be the result of an event (e.g. game over)

▪ Could be the result of an input (e.g. a key press)

11/13/25 GUI Applications 22

See
state.py

Checking Input

Keyboard

• is_key_down(key)

▪ Returns True if key is down

▪ key is a string ('a' or

'space')

▪ Empty string means any key

• is_key_pressed(key)

▪ Returns True if key pressed

▪ key not down prev. frame

• is_key_released(key)

▪ Returns True if key

released

▪ key was down prev. frame

Mouse/Touch

• touch

▪ Attribute giving a position

▪ Stored as a Point2 object

▪ But None if no touch

• is_touch_pressed()

▪ True if touch pressed

▪ touch was None prev.

frame

• is_touch_released()

▪ True if touch released

▪ touch not None prev.

frame
11/13/25 GUI Applications 23

Checking Input

Keyboard

• is_key_down(key)

▪ Returns True if key is down

▪ key is a string ('a' or

'space')

▪ Empty string means any key

• is_key_pressed(key)

▪ Returns True if key pressed

▪ key not down prev. frame

• is_key_released(key)

▪ Returns True if key

released

▪ key was down prev. frame

Mouse/Touch

• touch

▪ Attribute giving a position

▪ Stored as a Point2 object

▪ But None if no touch

• is_touch_pressed()

▪ True if touch pressed

▪ touch was None prev.

frame

• is_touch_released()

▪ True if touch released

▪ touch not None prev.

frame
11/13/25 GUI Applications 24

All accessed from
self.input in

App

Complex Input: Click Types

• Double click = 2 fast clicks

• Count number of fast clicks

▪ Add an attribute clicks

▪ Reset to 0 if not fast enough

• Time click speed

▪ Add an attribute time

▪ Set to 0 when mouse released

▪ Increment when not pressed

(e.g. in loop method

update())

▪ Check time when next

pressed
11/13/25 GUI Applications 25

See
touch.py

time

pressed

released pressed

released

Is it fast enough?

Designing Complex Applications

• Applications can become

extremely complex

▪ Large classes doing a lot

▪ Many states & invariants

▪ Specification unreadable

• Idea: Break application

up into several classes

▪ Start with a “main” class

▪ Other classes have roles

▪ Main class delegates work

11/13/25 GUI Applications 26

MainApp

Animation

See
subcontroller

.py

▪ Processes input

▪ Determines state

▪ Animates (only)

Calls the methods of

• Pattern: reusable solution to a common problem

▪ Template, not a single program

▪ Tells you how to design your code

▪ Made by someone who ran into problem first

• In many cases, a pattern gives you the interface

▪ List of headers for non-hidden methods

▪ Specification for non-hidden methods

▪ Only thing missing is the implementation

How to Break Up: Software Patterns

Just like

this course!

11/13/25 27GUI Applications

Model

• Defines and

manages the data

• Responds to the

controller requests

View

• Displays the model

 to the app user

• Provides user input

to the controller

Controller

• Updates model in

response to events

• Updates view with

model changes

Model-View-Controller Pattern

Calls the

methods or

functions of

11/13/25 28GUI Applications

Division

can apply

to classes

or modules

MVC in this Course

Model

• A3: Color classes

▪ RGB, CMYK & HSV

• A4: Turtle, Pen

▪ Window is View

• A6: Pixels, Image

▪ Data is always in model

• A7: Frog, Log, etc..

▪ All shapes/geometry

Controller

• A3: a3app.py

▪ Hidden classes

• A4: Functions in a4.py

▪ No need for classes

• A6: Filter

• Processes the data/image

• A7: Froggit, Level

▪ Main part of assignment!

11/13/25 GUI Applications 29

MVC in this Course

Model

• A3: Color classes

▪ RGB, CMYK & HSV

• A4: Turtle, Pen

▪ Window is View

• A6: Pixels, Image

▪ Data is always in model

• A7: Frog, Log, etc..

▪ All shapes/geometry

Controller

• A3: a3app.py

▪ Hidden classes

• A4: Functions in a4.py

▪ No need for classes

• A6: Filter

• Processes the data/image

• A7: Froggit, Level

▪ Main part of assignment!

11/13/25 GUI Applications 30

Why classes sometimes

and functions others?

Model

Subclasses of
GObject

 • GEllipse,

GImage, …

 • Often more than one

View
Class GView,

GInput

 • Do not subclass!

 • Part of GameApp

Controller

Subclass of
GameApp

Model-View-Controller in CS 1110

11/13/25 31GUI Applications

Classes in
game2d

Method draw

in GObject

Attribute view

(inherited)

Other attributes

(defined by you)

Model

Subclasses of
GObject

 • GEllipse,

GImage, …

 • Often more than one

View
Class GView,

GInput

 • Do not subclass!

 • Part of GameApp

Controller

Subclass of
GameApp

Model-View-Controller in CS 1110

11/13/25 32GUI Applications

Classes in
game2d

Method draw

in GObject

Attribute view

(inherited)

Other attributes

(defined by you)

Models in Assignment 7

• Often subclass of
GObject

▪ Has built-in draw method

• Includes groups of models

▪ Example: rockets in
pyro.py

▪ Each rocket is a model

▪ But so is the entire list!

▪ update() will change

both

• A7: Several model classes

▪ Ship to animate the player

▪ Alien to represent an

alien

11/13/25 GUI Applications 33

See pyro.py

rocket

sparks

	Slide 1: GUI Applications
	Slide 2: Announcements for This Lecture
	Slide 3: A Standard GUI Application
	Slide 4: A Standard GUI Application
	Slide 5: A Standard GUI Application
	Slide 6: The Animation Frame
	Slide 7: Must We Write this Loop Each Time?
	Slide 8: Must We Write this Loop Each Time?
	Slide 9: Must We Write this Loop Each Time?
	Slide 10: But There is a Catch
	Slide 11: Attributes = Loop Variables
	Slide 12: Programming Animation
	Slide 13: Programming Animation
	Slide 14: Programming Animation
	Slide 15: Variables and the Loop
	Slide 16: The Actual Game Loop
	Slide 17: Designing a Game Class: Animation
	Slide 18: Designing a Game Class: Animation
	Slide 19: Designing a Game Class: Animation
	Slide 20: Interframe Computation: Touch
	Slide 21: State: Changing What the Loop Does
	Slide 22: States and the Class Invariant
	Slide 23: Checking Input
	Slide 24: Checking Input
	Slide 25: Complex Input: Click Types
	Slide 26: Designing Complex Applications
	Slide 27: How to Break Up: Software Patterns
	Slide 28: Model-View-Controller Pattern
	Slide 29: MVC in this Course
	Slide 30: MVC in this Course
	Slide 31: Model-View-Controller in CS 1110
	Slide 32: Model-View-Controller in CS 1110
	Slide 33: Models in Assignment 7

