A Standard GUI Application

11/9/25

_ Check for user input
M Process user input

Animates the Update the objects

application,
like a movie
Update display/view
No change to objects

Restriction set by

graphics cards

Must We Write this Loop Each Time?

while program_is_running:
Get information from mouse/keyboard
Handled ¥

Method call

Your cod (for 10 body) - Write loop body
L. in an app class.
application.update() . OS/GUI handles

everything else.
#| Custom Application class

with its own attributes

Programming Animation

Intra-Frame Inter-Frame

Designing a Game Class: Animation

» Computation within frame + Computation across frames
= Only need current frame = Use values from last frame
» Example: Collisions * Example: Movement
= Need old position/velocity

= Compute next position

= Need current position

= Use to check for overlap
» Can use local variables

= All lost at update() end

= But no longer need them

* Requires attributes
= Attributes never deleted
= Remain after update() ends

class Animation(game?d.GameApp):

""" App to animate 4 Parent class that
does hard stuff

See animation.py

def start(self):
""Initializes the game loop."""
Loop initialization
def update(self,dt): DoNOT use toft
""Changes the ellipse positiQn."™
Loop body
def draw(self):

"""Draws the ellipse"" Use method draw()
defined in GObject

Interframe Computation: Touch

* Works like an Etch-a-Sketch

= User draws by touching

Line segment = 2 points
= Checks position each frame \
= Draws lines between touches
* Uses attribute touch in GInput ,
= The mouse press position /
Previous
/

S~

See touch.py

= Or None if not pressed

= Access with self.input.touch
* But we also need last touch!

= Forgot if we do not store it

= Purpose of attribute last

State: Changing What the Loop Does

= State: Current loop activity State ANIMATE_CIRCLE

= Playing game vs. pausing K 4 .
= Ball countdown vs. serve ' \.
1
* Add an attribute state \ !
= Method update() checks state 3 R !

= Executes correct helper
* How do we store state?
= State is an enumeration;
one of several fixed values
= Implemented as an int

See state.py

= Global constants are values

11/9/25

States and the Class Invariant

 Think of each state as a mini-program 7 ~
= Has its own update functionality/logic "I ®
= Usually separated out as helper to update \ !
= update uses ifs to send to correct helper \\ .

~ -

* Need to include in the class invariant
. . . See state.py
= Some attributes only used in certain states
= What values must they have in other states?
* Also need rules for when we switch states

= Could be the result of an event (e.g. game over)
= Could be the result of an input (e.g. a key press)

Checking Input
Keyboard Mouse/Touch
e is_key_down(key) ¢ touch

= Returns True if key is down
= key is a string (‘a' or 'space’)
= Empty string means any key
e is_key_pressed(key)
= Returns True if key pressed
= key not down prev. frame
e is_key_released(key)
= Returns True if key released
= key was down prev. frame

= Attribute giving a position

= Stored as a Point2 object

= But None if no touch
¢ is touch_pressed()

= True if touch pressed

= touch was None prev. frame
¢ is_touch_released()

= True if touch released

= touch not None prev. frame

Designing Complex Applications

* Applications can become
extremely complex
= Large classes doing a lot
= Many states & invariants
= Specification unreadable
* Idea: Break application
up into several classes
= Start with a “main” class
= Other classes have roles
= Main class delegates work

. = Processes input
MainApp P

= Determines state

1
1
| Calls the methods of
1
v

Animation * Animates (only)

See subcontroller.py

10

Models in Assignment 7

 Often subclass of GObject
= Has built-in draw method

* Includes groups of models
= Example: rockets in pyro.py
= Each rocket is a model
= But so is the entire list!
= update() will change both

* A7: Several model classes
= Ship to animate the player
= Alien to represent an alien

&

7
Complex Input: Click Types
» Double click =2 fast clicks it £ -
. t fast ?
» Count number of fast clicks S L fast enoug
= Add an attribute clicks pressed released
= Reset to 0 if not fast enough — —
¢ Time click Speed released pressed
= Add an attribute time
= Set to 0 when mouse released time
= Increment when not pressed
(e.g. in loop method update()) See touch.py
= Check time when next pressed
9
Model-View-Controller Pattern
Division Calls the
can apply Controller methods or
to classes ¢ Updates model in functions of
or modules response to events
/ ¢ Updates view with \
model changes
Model —
¢ Defines and
manages the data
* Responds to the
controller requests
11

12

