Lecture 22

While Loops

Announcements for Today

Assignments Video Lessons
* A4 1s now graded * Lesson 24 for today
* Mean: 88.2 Median: 91 * Lesson 25 for Thurs

= Mean: 8.6 hrs SDev:3.2hrs < Lessons 26, 27 for Tues

* AS graded by Saturday -l(i

» Keep working on A6
= Follow micro-deadlines
= Should be on Vignette now

= Start Pixellate tomorrow -
* A7 posted on Friday

11/11/25 While-Loops

Recall: The For-Loop

Create local var x # Write as a for-loop

X = seqn[O] for x in seqn:

print(x) | print(x)

X = seqn[1]

printi[Not valid } Key Concepts
o * iterable: seqn

x = seqnllen(seqn)-1] « loop variable: x

print(x)

* body: print(x)

11/11/25 While-Loops

Important Concept in CS:
Doing Things Repeatedly

1. Process each item 1n a sequence

* Compute aggregate statistics fo
such as the mean, median, s

for x in sequence:
’ process X
= Send everyone 1n a Facebook gr

2. Perform n trials or get n samples.

* A4: draw a triangle six times to for x in range(n):

3. Do something an unknown
number of times 9999

= CUAUYV team, vehicle keeps
moving until reached its goal

11/11/25 While-Loops

Beyond Sequences: The while-loop

while <condition>:

Vs For-Loop
loop
sta,temerﬁ[L. }
condition

* Broader notion of loop

loop . “ ”
sta,temenﬁ body } You define “more to do
= Not limited sequences

* Must manage loop var

" You create 1t before loop

true S
@ body Y ou update it inside loop
* For-loop automated 1t

false

» Trickier to get right

11/11/25 While-Loops

while Versus for

For-Loop

While-Loop

def sum_squares(n):

"""Rets: sum of squares
Prec: n is int > O"""

total = 0

for x in range(n):
total = total + x*x

def sum_squares(n):

Must remember
to Increment

11/11/25

While-Loops

"""Rets: sum of squares
Prec: n is int > O"""

total = 0
x=0
while x < n:

1 total = total + X*x
X =Xx+1]

The Problem with While-Loops

e Infinite loops are possible

= Forget to update a loop variable

* Incorrectly write the boolean expression
* Will hang your program

= Must type control-C to abort/quit
* But detecting problems is not easy

= Sometimes your code 1s just slow

= Scientific computations can take hours

 Solution: Traces

11/11/25 While-Loops

Tracing While-Loops

print('Before while') Output:

total = 0 ﬁ Important } Before while
x=0 Start loop O
while X <n: End loop

print('Start loop '+str(x))
total = total + x*x

Start loop 1

End loop
x=x+1 Start loop &
print('End loop ') End 1oop

print('After while') After while

ﬁ Important }
11/11/25 While-Loops

How to Design While-Loops

* Many of the same rules from for-loops
= Often have an accumulator variable

* Loop body adds to this accumulator

 Differences are loop variable and iterable
= Typically do not have iterable

* Breaks up into three design patterns
1. Replacement to range()

2. Explicit goal condition

3. Boolean tracking variable

11/11/25 While-Loops

While Loops and Lists

For-Loop While-Loop
def increment_for(seq): def increment_while(seq):
"""Increments each """Increments each
element of seq list element of seq list
Prec: seq contains ints""" Prec: seq contains ints""“
for k in range(len(seq)): k=0
 seqlk] = seq[k]+1 while k < len(seq):
[Must still rememberg seq(k] = seq[k]+1

to increment k=k+ 1]
11/11/25 While-Loops 10

Using the Goal as a Condition

def prompt(prompt,valid):
"""Returns: the choice from a given prompt.

This function asks the user a question, and waits for a response. It
checks if the response is valid against a list of acceptable answers.
If it is not valid, it asks the question again. Otherwise, it returns

the player's answer. Tells you the

Precondition: prompt is a string stop condition

Precondition: valid is a tuple of strings™"

pass # Stub to be implemented

11/11/25 While-Loops 11

Using the Goal as a Condition

def prompt(prompt,valid):
"""Returns: the choice from a given prompt.

Preconditions: prompt is a string, valid is a tuple of strings"""
response = input(prompt)

Continue to ask while the response is not valid.

while not (response in valid):
print('Invalid response. Answer must be one of ")+str(valid)
response = input(prompt)

return response

11/11/25 While-Loops 12

Using a Boolean Variable

def roll_past(goal):
"""Returns: The score from rolling a die until passing goal.

This function starts with a score of O, and rolls a die, adding the
result to the score. Once the score passes goal, it stops and
returns the result as the final score.

If the function ever rolls a 1, it stops and the score is 0.

Condition 1s

Preconditions: goal is an int > 0""" ,
too complicated

pass # Stub to be implemented

Introduce a boolean variable.

Use 1t to track condition.

11/11/25

13

Using a Boolean Variable

def roll_past(goal):
"""Returns: The score from rolling a die until passing goal."""
loop = True # Keep looping until this is false

score = 0
while loop:
roll = random.randint(1,6)
if roll == 1.
- score = 0; loop = False Tracl.< j[he
condition

else:
‘ score = score + roll; loop = score < goal

return score

11/11/25 While-Loops

14

Advantages of while vs for

table of squares to N # table of squares to N

seq = (]
n = floor(sqrt(N)) + 1

for k in range(n):

l

seg.append(k*k)

seq = []

k=0

while k*k < N:
seg.append(k*k)
k=k+1

-

A for-loop requires that
you know where to stop
the loop ahead of time

4 . N
A A while loop can use

complex expressions to
check 1f the loop 1s done)

11/11/25

While-Loops 15

Advantages of while vs for

Fibonacci numbers:

Fy=1
F,=1
F,=F,,+F,
Table of n Fibonacei nums # Table of n Fibonaceci nums
fib =[1, 1] fib =1, 1]
for k in range(?,n): while len(fib) < n:

~ fib.append(fib[-1] + fib[-8]) | fib.append(fib[-1] + fib[-2])

Sometimes you do not use Do not need to have a loop
the loop variable at all variable if you don’t need one

11/11/25 While-Loops 16

Difficulties with while

[Be careful when you modify the loop variable J

def remd3(Ist): >>> g = [3, 8, 4]
"""Remove all 3's from Ist"™" >>> rem3(a)
i=0 >>> g
while i < len(lst): A [2]
no &’s in 184[0..i-1] B: [3]
if 1st[i] == &: C. t5 3
- del Ist[i] S
i=i+l D1l
E: something else

11/11/25 While-Loops 17

Difficulties with while

[Be careful when you modify the loop variable J

def remd3(Ist): >>> g = [3, 8, 4]
"""Remove all 3's from Ist""" >>> remd3(a)
i=0 >>> g
while i < len(Ist): A [2]
no 3’s in Ist[0..i—1] B: [3]
if 1st[i] == &: o
' del Ist[i] C: ‘.5’2] Correct
i=i+l D:]
E: something else

11/11/25 While-Loops 18

Difficulties with while

[Be careful when you modify the loop variable J

def remd(lst): def remd(lst):
"""Remove all 3's from lst"" """Remove all 3's from lst""
i=0 while 3 in Ist:
while i < len(lst): - Ist.remove(3)
no &’s in 1st[0..i—1]
4 . L. N
if Ist[i] == &: The stopping condition 1s not
del 1st[i] . ~ | anumerical counter this time.
else: Stopping Simplifies code a lot.
i =i+] point keeps -
changing y

11/11/25 While-Loops 19

Application: Convergence

* How to implement this function?

def sqrt(e):

- """Returns the square root of ¢""
« Consider the polynomial f(x) =x*—c¢

= Value sqrt(c) 1s a root of this polynomial
* Suggests a use for Newton’s Method

= Start with a guess at the answer

= Use calculus formula to improve guess

11/11/25 While-Loops

20

Example: Sqrt(2)

* Actual answer: 1.414235624
q=x,/2+cl2x,

* Xy = Rough guess of sqrt(R)
ex; =05+1=1.5
°x,=0.75+2/3=1.41666

* x;=0.7083 + 2/2.833 = 1.41425

11/11/25 While-Loops 21

When Do We Stop?

* We don’t know the sqrt(c)
* This was thing we wanted to compute!
= So we cannot tell how far off we are

= But we do know sqrt(c)’ =c

* So square approximation and compare
= while x*x is not close enough to ¢
= while abs(x*x — ¢) > threshold

11/11/25 While-Loops

22

When Do We Stop?

* We don’t know the sqrt(c)
* This was thing we wanted to compute!
= So we cannot tell how far off we are

= But we do know sqrt(c)’ =c¢

* So square approximation and compare

While-loop computes until

the answer converges

11/11/25 While-Loops 23

The Final Result

def sqrt(c,err=1e-6):
"""Returns: sqrt of ¢ with given margin of error.

Preconditions: ¢ and err are numbers > 0"
x=0¢/R.0

while abs(x*x-¢) > err:
Get x,,, from x_
x =x/2.0+¢/(3.0*%)

return x

11/11/25 While-Loops

24

Using while-loops Instead of for-loops

Advantages Disadvantages

 Better for modifying data Performance 1s slower
= More natural than range = Python optimizes for-loops

= Works better with deletion = Cannot optimize while

 Better for convergent tasks Infinite loops more likely

= Loop until calculation done = Easy to forget loop vars

= Exact steps are unknown = Or get stop condition wrong
« Easier to stop early * Debugging 1s harder

= Just set loop var to False = Will see why in later lectures

11/11/25 While-Loops 25

Optional Exercise

11/11/25

While-Loops

26

The Game of Pig: A Random Game

» Play progresses clockwise

* On your turn, throw the die:

= [froll 1: lose turn, score zero P

= Anything else: add it to score \/ /

* Can also roll again (and lose)

* If stop, score 1s “banked”

* First person to 100 wins

11/11/25 While-Loops

27

The Game of Pig: A Random Game

» Play progresses clockwise

* On your turn, throw the die:

* Can also roll again (and lose)

* If stop, score 1s “banked”

* First person to 100 wins

11/11/25 While-Loops

28

Designing an Al for Opponent is Easy

83% 3.33 3.33
2 69% 2.78 6.11
3 58% 2.32 8.43
4 48% 1.92 10.35
5 40% 1.61 11.96
6 33% 1.34 13.30
7 28% 1.12 14.42
8 23% 93 15.35
9 19% 7 16.12
10 16% .65 16.77
50 0.01% 0.0004 19.998

11/11/25 While-Loops

Designing an Al for Opponent is Easy

83% 3.33 3.33
2 69% 2.78 6.11
3 58% 2.32 8.43
4 48% 1.92 10.35
5 40% 1.61 11.96
6 33% 1.34 13.30
7 28% 1.12 14.42
8 23% 03 15.35
9 19% Strategy; 16.12
10 16% Bank at 20 16.77
50 0.01% 0.0004 [19.998]

11/11/25 While-Loops

The Primary Function

def play(target):
"""Plays a single game of Pig to target score.

Precondition: target is an int > 0™
Initialize the scores
while no one has reached the target
Play a round for the player
If the player did not reach the target
Play a round for the opponent

Display the results

11/11/25 While-Loops

31

The Player Round

def player_turn():
""" Runs a single turn for the player."""
while the player has not stopped
Roll the die
#1Ifisal
Set score to O and stop the turn
else
Add the to the score
Ask the player whether to continue
Return the score

Prompt helper }

11/11/25 While-Loops

32

The Opponent Round

def roll_past(goal):

11/11/25

while loop:

roll = random.randint(1,6)
if roll == 1:

- score = 0; loop = False
else:

"""Returns: The score from rolling a die until passing goal."""
loop = True # Keep looping until this is false
score =0

(

-

Look familiar?

\

J

‘ score = score + roll; loop = score < goal

return score

While-Loops

33

