Beyond Sequences: The while-loop

11/9/25

while <conditior>:

statement 10(3;3
condition

Ty
statement n | pody

Vs For-Loop

while Versus for

* Broader notion of loop
* You define “more to do”
= Not limited sequences

* Must manage loop var
= You create it before loop
= You update it inside loop
= For-loop automated it

 Trickier to get right

For-Loop

While-Loop

def sum_squares(n):
"""Rets: sum of squares
Prec: n is int > 0"™"
total =0

for x in range(n):
total = total + x*x

Must remember

to increment

def sum_squares(n):
"""Rets: sum of squares
Prec: n is int > 0"
total =0
x=0
while x <n:
total = total + x*x
x=x+1

Tracing While-Loops

print('Before while')

total =0 Important
x=0

while x <n:

print('Start loop '+str(x))
total = total + x*x
x=x+1
print('End loop)
print('After while")
Important

Output:
Before while
Start loop O
End loop
Start loop 1
End loop
Start loop
End loop
After while

How to Design While-Loops

* Many of the same rules from for-loops

= Often have an accumulator variable

= Loop body adds to this accumulator

* Differences are loop variable and iterable

= Typically do not have iterable

* Breaks up into three design patterns

1. Replacement to range()
2. Explicit goal condition

3. Boolean tracking variable

Replacing the Range Iterable

range(a,b)
i=a
while i[<Jb:
process integer i
i=i+1

range(c,d+1)
i=c
while i(<3d:
process integer i
=i+l

Using the Goal as a Condition

store in count # of '/'s in String s
count = 0

i=0

while i < len(s):

if s[i] == /"

‘ count= count + 1

i=i+1

count is # of '/'s in §[0.s.length()-1]

Store in double var. v the sum
#1/1 +1/2+.+1/n
v=0; # callthis 1/0 for today
i=1
while i <= n:

v=v+10/i

i=i+1
#v=1/1 +1/2+ . .+1/n

def prompt(prompt,valid):

response = input(prompt)

while not (response in valid):

response = input(prompt)

reburn response

""Returns: the choice from a given prompt.

Preconditions: prompt is a string, valid is a tuple of strings""

Continue to ask while the response is not valid.

print('Invalid response. Answer must be one of ")+str(valid)

Using a Boolean Variable

def roll_past(goal):
""Returns: The score from rolling a die until passing goal.""
loop = True # Keep looping until this is false
score =0
while loop:
roll = random.randint(1,6)
ifroll==1:

\ score = 0; loop = False Track 'the
olse: ’ condition

‘ score = score + roll; loop = score < goal
return score

11/9/25

Advantages of while vs for

table of squares to N # table of squares to N

seq =] seq =1l

n = floor(sqrt(N)) + 1 k=0

for k in range(n): while k*k < N:

\ seq.append(k*k) seq.append(k*k)
k=k+1

A while loop can use
complex expressions to
check if the loop is done

A for-loop requires that
you know where to stop
the loop ahead of time

Difficulties with while

[Be careful when you modify the loop variable]

def rem3(lst): def rem3(lst):

"""Remove all 3's from lst""" """Remove all 3's from lst"""

i=0 while 3 in Ist:

while i < len(lst): \ Ist.remove(3)
no 3’s in 1st[0..i-1]
if 1st[i] == &: The stopping condition is not
‘ del 1st[i] - a numerical counter this time.
else: S_tOPng Simplifies code a lot.

=it point keeps

changing

Application: Convergence

* How to implement this function?

def sqrt(e):

‘ """Returns the square root of ¢""
« Consider the polynomial f(x) = x2— ¢

= Value sqrt(c) is a root of this polynomial
* Suggests a use for Newton’s Method

= Start with a guess at the answer

= Use calculus formula to improve guess

The Final Result

def sqrt(c,err=1e-6):
"""Returns: sqrt of ¢ with given margin of error.

Preconditions: ¢ and err are numbers > 0"
x=0¢/2.0

while abs(x*x-¢) > err:
Get xp+1 from x,
x =x/2.0+¢/(R.0*x)

return x

10

Using while-loops Instead of for-loops

Advantages Disadvantages

11

* Better for modifying data * Performance is slower

= More natural than range = Python optimizes for-loops
= Works better with deletion = Cannot optimize while

 Better for convergent tasks * Infinite loops more likely

= Loop until calculation done = Easy to forget loop vars
= Exact steps are unknown = Or get stop condition wrong
« Easier to stop early » Debugging is harder

= Just set loop var to False = Will see why in later lectures

12

