An Application

11/2/25

* Goal: Presentation program (e.g. PowerPoint)
* Problem: There are many types of content

= Examples: text box, rectangle, image, etc.

= Have to write code to display each one
* Solution: Use object oriented features

= Define class for every type of content

= Make sure each has a draw method:

for x in slide[i].contents:
x.draw(window)

Abbreviate Defining a Subclass
as SC to right

class SlideContent(object):

Superclass
Parent class SlideContent
Base class

""" Any object on a slide.""

def __init_ (self, x, y, W, h): ...

def draw_frame(self): ... Subclass (

def select(self): .. Child class ToxtBox fmege
Derived class

class TextBox(SlideContent):
"""An object containing text.""
def __init_ (self, x, y, text): ...
def draw(self): ...

class Image(SlideContent):
AR fmage ™
def __init_ (self, x, y, image_file): .
def draw(self): ...

Class Definition: Revisited

class <name>(<superclass>):

Class specification T

getters and setters (may need module name)

initializer (__init_)

definition of operators

* Every class must
extend something
* Previous classes all

definition of methods extended object

anything else

object and the Subclass Hierarcy

* Subclassing creates a

Kivy Example
hierarchy of classes

= Each class has its own object
super class or parent kivy.uix.widge.WidgetBase
= Until object at the “top” Kivy uix widget Widget
* object has many features
= Special built-in fields: kivy.uix label. Label

class,_ diet__ kivy.uix.butto
= Default operators:
ste,__repr__

Name Resolution Revisited
* To look up attribute/method name

1. Look first in instance (object folder) ‘

2. Then look in the class (folder)

* Subclasses add two more rules:
3. Look in the superclass
4. Repeat 3. until reach object

plids F——

A Simpler Example

class Employee(object):
""Instance is salaried worker""
INSTANCE ATTRIBUTES:

_name: full name, a string

_start: first year hired,

anint >-1, -1 if unknown

_salary: yearly wage, a float

class Executive(Employee):

"""An Employee with a bonus""
INSTANCE ATTRIBUTES:
#_bonus: annual bonus, a float

Method Overriding

¢ Which __str__ do we use?
= Start at bottom class folder
= Find first method with name
= Use that definition

» New method definitions

override those of parent

= Access to old version is lost
= New version used instead
= Example: __init__

About super()

e super() is very limited
= Can only go one level
= BAD: super().superQ)

p[iaz |

* Need arguments for more
= super(class,sel

Object in
the method

The subclass

id2

super(Exec,self).__str__()

Empl object
@ > st O 5 _str O

p.__str__O super().__str__() super(Empl,self).__str__()

Accessing the “Previous” Method

* What if you want to use the ¢S Employee(object)
original version method? ‘An Bmployee with a salary

= New method = original+more ;1;{ str_(self):
= Do not want to repeat code return (self. _name +

from the original version
« Use the function super()

!, year ' + str(self._start) +
', salary ' + str(self._salary))

= “Converts” type to parent class

class Executive(Employee):
= Now methods go to the class "D Employee with a bomus.™
* Example:
def __str_ (self):
super().__str_ ()

return (super().__str__(
+', bonus ' + str(self._bonus))

In Python 2
self goes here

Primary Application: Initializers

class Employee(object):

def __init__(self,n,d,s=80000.0):
self._name = n

self._start =d

self._salary = s

lass Executive(Employee):

def __init__(self,n,d,b=0.0):
‘ super().__init__(n,d)
self._bonus =b

Instance Attributes are (Often) Inherited

class Employee(object): a4
)

def __init__(self,n,d,s=50000.0):

self._name = n _hame
self._start =d _gtart 2012

Created in
Employee
initializer

self._salary =s

lass Executive(Employee):

Created in
Executive
initializer

def __init__(self,n,d,b=0.0):
super().__init__(n,d)
self._bonus = b

10

11

Also Works With Class Attributes

Class Attribute: Assigned outside of any method definition

class Employee(object):
"""Instance is salaried worker"""
Class Attribute
STD_SALARY = 50000.0

class Executive(Employee): 50000.0

"""An Employee with a bonus.""”
Class Attribute

STD_BONUS = 10000.0 10000.0

12

