Lecture 19

Using Classes Etffectively

Announcements for Today

Assignments Optional Videos
* A4 should be done * Videos 20.9-20.10 today
= But the survey is still open « Also Lesson 21 for today
* A5 to be posted tonight * Lesson 22 for next time
= Short written assignment
* Due next Thursday ..‘4
* A6 also posted tonight *

= Due November 14th
= Follow the microdeadlines! %
= et started on it first

10/30/25 Using Classes Effectively

Recall: The __init Method

[two underscores

W — WULIAGLI\ UUGLLG 1254, None)

\ [Called by the constructor]

de init__ (self, n, s, b):
"""Tnitializer: creates a Worker

id8

Has last name n, SSN s, and boss b Worker

Iname | 'White'

Precondition: n a string,
s an int in range 0..999999999, ssn.| 1234
b either a Worker or None. """

boss None

self.lname = n
self.ssn = s
self.boss =D

10/30/25 Using Classes Effectively

Recall: The __init Method

two underscores

[W — WULIAGLI\ UUGLLG 1254, None)

\

de

init__ (self, n, s, b):

""Tnitializer: creates a Worker

Has last name n, SSN s, and boss b

Precondition: n a string,
s an int in range 0..999999999,
b either a Worker or None. """

self.lname = n

-

self.essn = s
self.boss =D
10/30/25

Using Classes Effectively

-

Are there other
special methods
that we can use?

~

/

Example: Converting Values to Strings

str() Function repr () Function
« Usage: str() » Usage: repr()
= Evaluates the expression = Evaluates the expression
= Converts it into a string = Converts it into a string
 How does 1t convert? How does 1t convert?
= gstr(R) — 2 = prepr(R) — '
= str(True) — 'True’ = prepr(True) — 'True’
= str('True') — 'True' = prepr('True’) — "'True"

= gtr(Pointd()) — '(0.0,0.0,0.0)' repr(Point3()) —

"<class 'Pointd"> (0.0,0.0,0.0)"

10/30/25 Using Classes Effectively 5

Example: Converting Values to Strings

str() Function repr () Function
4 .)
 Usage: str() . repr() 1s for
= Evaluates the expression unambi gious
= Converts it into a strin :
. g _ reprgsentatloP)
 How does it co What type is How does it co ‘
. arty | The value’s
= str(R) — 2 this value? = repr(R) — '3 :
type 1s clear
= str(True) — 'Tru = repr(True) —
= gtr('True') — 'True' = prepr('True’) — "'True"
= gtr(Pointd()) — '(0.0,0.0,0.0)' = repr(Pointd()) —

"<class 'Point3™> (0.0,0.0,0.0)"

10/30/25 Using Classes Effectively 6

What Does str() Do On Objects?

« Does NOT display contents class Point3(object):

>>> p = Point3(1,2,3) """(Class for points in 3d space""

>>> str(p) def _ str_ (self):

<Pointd object at 0x1007a90> """Returns: string with contents"""
e Must add a special method return '(+ste(self.x) + ', +

= gstr for str() str(self.y) + ') +

= repr__ for repr() str(self.z) + ')
* Could get away with just one def _ rvepr_ (self):

= repr() requires __repr__ """Returns: unambiguous string""

= gtr() can use __repr__ return str(self. class)+

(if __str__ 1s not there) str(self)

10/30/25 Using Classes Effectively 7

What Does str() Do On Objects?

* Does NOT display contents
>>>p = Point3(1,3,3)
>>> str(p)

'<Pointd object at 0x1007a90>'

e Must add a special method
= gtr for str()
= repr__ for repr()

* Could get away with just one
= repr() requires __repr__

= gtr() can use __repr__
(if __str__ 1s not there)

10/30/25 Using Classes Effectively

class Point3(object):

"""(Class for points in 3d space""

def _ str (self):

"""Returns: string with contents"""

return '('+str(self.x) +',' +
ste(self.y) + ', +
str(self.z) +")'

Gives the
class name

def __repr__ (self):
"""Returns: unambi

return str(self. class)+
str(self)

repr__ using
__str__ as helper

Exercise: str and repr

class Example(object): >>> g, = Example(3)
IIIlIIA Simple Olassllllll >>> Str(a) # ah_str()_
def __init_ (selfx): What is the result?
. selfx=x A: |5|
def _ str_ (self): B: 'Value &'
. return 'Value '+str(self.x) C- 'Example[51'
def _ repr__ (self): D: Error
. return 'Example['+str(x)+']' E: 1 don’t know

10/30/25 Using Classes Effectively

Exercise: str and repr

class Example(object):
IIIIIIA Simple CI&SS"""

def _ init_ (self,x):
. selfx =x

def _ str (self):
. return 'Value '+str(self.x)

def __repr__ (self):
. return 'Example['+stp(x)+']'

>>> g, = Example(3)
>>> str(a)

What is the result?
A:'d

C: 'Example[3]

D: Error

E: I don’t know

10/30/25 Using Classes Effectively

10

Exercise: str and repr

class Example(object):
IIIIIIA Simple CI&SS"""

def _ init_ (self,x):
. selfx =x

def _ str (self):
. return 'Value '+str(self.x)

def __repr__ (self):
. return 'Example['+stp(x)+']'

>>> g, = Example(3)
>>> repr(a)

What is the result?
A: '8

B: 'Value &'

C: 'Example[3]

D: Error

E: I don’t know

10/30/25 Using Classes Effectively

11

Exercise: str and repr

class Example(object):
IIIIIIA Simple CI&SS"""

def _ init_ (self,x):
. selfx =x

def _ str (self):
. return 'Value '+str(self.x)

def __repr__ (self):

. return 'Example['+str(x)+'"

No self

>>> g, = Example(3)
>>> repr(a)

What is the result?
A: '8

B: 'Value &'

C: 'Example[3]

E: I don’t know

10/30/25 Using Classes Effectively

12

DESigning Types From first
day of class!

. _I/
» Type: set of values and the operations on them

" Int: (set: integers; ops: +,—, *,//, ...)
= Time (set: times of day; ops: time span, before/after, ...)
= Worker (set: all possible workers; ops: hire,pay,promote,...)

= Rectangle (set: all axis-aligned rectangles in 2D;
ops: contains, intersect, ...)

* To define a class, think of a real type you want to make
= Python gives you the tools, but does not do it for you
= Physically, any object can take on any value
= Discipline 1s required to get what you want

10/30/25 Using Classes Effectively 13

Making a Class into a Type

1. Think about what values you want in the set

= What are the attributes? What values can they have?
2. Think about what operations you want
= This often influences the previous question

» To make (1) precise: write a class invariant

= Statement we promise to keep true after every method call

* To make (2) precise: write method specifications

= Statement of what method does/what 1t expects (preconditions)

* Write your code to make these statements true!

10/30/25 Using Classes Effectively 14

Planning out a Class

class Time(object):
"""(Class to represent times of day.

Inv: hour is an int in 0..23
Inv: min is an int in 0..59""

def __init__ (self, hour, min):

"""The time hour:min.
Pre: hour in 0..23; min in 0..59"""

def increment(self, hours, mins):
"""Move time hours and mins
into the future.
Pre: hours int >= 0; mins in 0..59""

def isPM(self):
""Returns: True if noon or later."""

+

|

Class Invariant

States what attributes are present
and what values they can have.

A statement that will always be
true of any Time instance.

Method Specification
States what the method does.

Gives preconditions stating what

is assumed true of the arguments.

10/30/25 Using Classes Effectively

15

Planning out a Class

class Rectangle(object):
"""Class to represent rectangular region

Inv: t (top edge) is a float
Inv: 1 (left edge) is a float
Inv: b (bottom edge) is a float —
Inv: r (right edge) is a float

Additional Inv: 1 <=r and b <=t.""

def __init_ (self, t, 1, b, r):
"""The rectangle [, r] x [t, b]
Pre: args are floats; 1 <=r; b <=t"""

def area(self):
"""Return: area of the rectangle.""" }

def intersection(self, other):

"""Return: new Rectangle describing
intersection of self with other."""

Class Invariant

States what attributes are present
and what values they can have.

A statement that will always be
true of any Rectangle instance.

Method Specification
States what the method does.

Gives preconditions stating what

is assumed true of the arguments.

10/30/25 Using Classes Effectively

16

Planning out a Class

class Rectangle(object):

""Class to represent rectangular region

Inv: t (top edge) is a float
Inv: 1 (left edge) is a float
Inv: b (bottom edge) is a float
Inv: r (right edge) is a float

Class Invariant

—

States what attributes are present
and what values they can have.

A statement that will always be

Additional Inv: 1 <=r and b <=t."" J | true of any Rectangle instance.

def __init_ (self, t, 1, b, r):
"""The rectangle [1, r] x [t, b
Pre: args are floats; 1 <=r;

def area(self):

Special invariant relating
attributes to each other

Method Specification

"""Return: area of the rectangle."" } States what the method does.

def intersection(self, other):

"""Return: new Rectangle describing

Gives preconditions stating what

is assumed true of the arguments.

intersection of self with other."""

10/30/25

Using Classes Effectively

17

Planning out a Class

class Hand(object):
"""Instances represent a hand in cards.

Inv: cards is a list of Card objects.
This list is sorted according to the
ordering defined by the Card class."""

def __init__ (self, deck, n):

"""Draw a hand of n cards.
Pre: deck is a list of >=n cards"""

def isFullHouse(self):

"""Return: True if this hand is a full
house; False otherwise"""

def discard(self, k):
"""Discard the k-th card."""

b

F

Class Invariant

States what attributes are present
and what values they can have.

A statement that will always be
true of any Rectangle instance.

Method Specification
States what the method does.

Gives preconditions stating what

is assumed true of the arguments.

10/30/25 Using Classes Effectively

18

Implementing a Class

 All that remains 1s to fill in the methods. (All?!)
* When implementing methods:

1. Assume preconditions are true
2. Assume class invariant 1s true to start
3. Ensure method specification 1s fulfilled

4. Ensure class invariant is true when done

 Later, when using the class:

* When calling methods, ensure preconditions are true
= [f attributes are altered, ensure class invariant 1s true

10/30/25 Using Classes Effectively 19

Implementing an Initializer

def __init__ (self, hour, min):
"""The time hour:min.
Pre: hour in 0..23; min in 0..59""" This 1s true to start

self.hour = hour
self. min = min

You put code here

This should be true
at the end

Inv: hour is an int in 0..23
Inv: min is an int in 0..59

10/30/25 Using Classes Effectively 20

Implementing a Method

Inv: hour is an int in 0..23

Inv: min is an int in 0..59 This 1s true to start

What we are supposed
def increment(self, hours, mins): to accomvplish
"""Move this time <hours> hours / P
and <mins> minutes into the future. o
Pre: hours [int] >= O; mins in 0..59""" {— This is also true to start

self. min = self.min + mins

self.hour = self.hour + hours o You put code here

——

This should be true
at the end

Inv: hour is an int in 0..23
Inv: min is an int in 0..59

10/30/25 Using Classes Effectively 21

Implementing a Method

Inv: hour is an int in 0..23
Inv: min is an int in 0..59

What we are supposed
def increment(self, hours, mins): to accomvplish
"""Move this time <hours> hours / P
and <mins> minutes into the future. o
Pre: hours [int] >= O; mins in 0..59""" {— This is also true to start

self. min = self.min + mins
self.hour = (self.hour + hours +

self.min // 60)
self. min = self.min % 60 You put code here
self.hour = self.hour % 24

——

This should be true
at the end

Inv: hour is an int in 0..23
Inv: min is an int in 0..59

10/30/25 Using Classes Effectively 22

Object Oriented Design

Interface

Implementation

* How the code fits together
* interface btw programmers
= interface btw parts of an app
* Given by specifications
= (lass spec and invariants
= Method specs and preconds
= Interface is ALL of these

* What the code actually does
= when create an object
= when call a method

* Given by method definitions
= Must meet specifications
= Must not violate invariants

= But otherwise flexible

Important concept for making
large software systems

10/30/25 Using Classes Effectively 23

Implementing a Class

 All that remains 1s to fill in the methods. (All?!)
* When implementing methods:

1. Assume preconditions are true
2. Assume class invariant 1s true to start
3. Ensure method specification 1s fulfilled

4. Ensure class invariant is true when done

 Later, when using the class:

* When calling methods, ensure preconditions are true
= [f attributes are altered, ensure class invariant 1s true

10/30/25 Using Classes Effectively 24

Recall: Enforce Preconditions with assert

def anglicize(n):

"""Returns: the anglicization of int n.

Precondition: n an int, 0 <n < 1,000,000"""
assert type(n) == int, str(n)+' is not an int'
a,ssert[O <nandn< IOOOOOO] [repr(n)+' is out of ra,nge']
Implement od here...

r

Check (part of) (Optional) Error message
the precondition

when precondition violated

10/30/25

Using Classes Effectively 25

Enforce Method Preconditions with assert

class Time(object):
"""Class to represent times of day."""

def __init__ (self, hour, min):

"""The time hour:min.
Pre: hour in 0..23; min in 0..59"™

assert type(hour) == int

assert O <= hour and hour < 24
assert type(min) == int

assert 0 <= min and min < 60

def increment(self, hours, mins):
"""Move this time <hours> hours

and <mins> minutes into the future.
Pre: hours is int >= 0; mins in 0..59""”
assert type(hour) == int

assert type (min) == int

assert hour >=0

10/30/25 : :
assert 0 <= min and min < 60

—

Using Classes

Inv: hour is an int in 0..23
Inv: min is an int in 0..59"""

Initializer creates/initializes all
of the instance attributes.

Asserts 1n 1nitializer guarantee the
initial values satisfy the invariant.

Asserts 1n other methods enforce

[| the method preconditions.

—

Peantivzalss
L TVUU LTV Ul]

26

Hiding Methods From Access

 Hidden methods
= start with an underscore
* do not show up in help()

= are meant to be internal
(e.g. helper methods)

* But they are not restricted
* You can still access them
= But this is bad practice!

= Like a precond violation

 (Can do same for attributes

= Underscore makes it hidden

* Only used inside of methods

10/30/25

class Time(object):
"""(Class to represent times of day.

Inv: hour is an int in 0..23
Inv: min is an int in 0..59""

def _is_minute(self,m):
"""Return: True if m valid minute"""

return (type(m) == int and
m >= 0 and m < 60)

def __init__ (self, hour, min):

"""The tlme hour:min_
Pre: hour in 0..23; min in 0..59"""

assert self._is minute(m)

Y[Helper]

Using Classes Effectively 27

Hiding Methods From Access

e Hidden methods class Time(object):

= start with an underscore Class to represent times of day.

Inv: hour is an int in 0..23
HIDDEN Min is an int in 0..59"""

= do not show up in help()

= are meant to be internal
(e.g. helper methods) def _is_minute(self,m):

 But they are not restricted """Return: True if m valid minute™"

return (type(m) == int and
m >= 0 and m < 60)

= You can still access them
= But this is bad practice!

= Like a precond violation def _init__(self, hour, min):

 (Can do same for attributes "The time hour:min.

o Pre: hour in 0..23; min in 0..59"""
Will come back to this assert self._is_minute(m)
) ﬁ Helper]

L4

10/30/25 Using Classes Effectively 28

Enforcing Invariants

class Time(object):

"mnOlgag to repr times of day

Inv:|hour is an int in 0..23
Inv:lmin is an int in 0..59

* These are just comments!
>>>t = Time(2,30)
>>> {.hour = 'Hello'

 How do we prevent this?

» Idea: Restrict direct access
= Only access via methods
= Use asserts to enforce them
 Example:
def getHour(self):

""Returns: the hour"""
return self.hour

def setHour (self,value):
"""Sets hour to value""
assert type(value) == int

self. numerator = value

10/30/25 Using Classes Effectively

assert value >= 0 and value < 24

29

Data Encapsulation

* Idea: Force the user to only use methods

Do not allow direct access of attributes

Setter Method Getter Method
* Used to change an attribute » Used to access an attribute
* Replaces all assignment » Replaces all usage of
statements to the attribute attribute 1n an expression

* Bad: * Bad:

>>> t.hour = B >>>x = §*t.hour
* Good: * Good:

>>> t.setHour(5) >>> x = 3*t.getHour()

10/30/25 Using Classes Effectively 30

Data Encapsulation

class Time(object):
"""Class to repr times of day. """

Getter |def getHour (self):
’ ""Returns: hour attribute™"
return self. hour

[Setter] def setHour(self, h):
""" Sets hour to h

Pre: his an int in 0..23™™ }
assert type(h) == int

assert 0 <=hand h <24
self._hour =d

NO ATTRIBUTES

in class specification

Method specifications

describe the attributes

Setter precondition 1s
same as the invariant

10/30/25 Using Classes Effectively

31

Data Encapsulation

class Time(object):
"""Class to repr times of day. """

Getter |def getHour (self):
I ""Returns: hour attribute™"
return self. hour

NO ATTRIBUTES

in class specification

Method specifications

describe the attributes

Setter } . .
% OREEWNE Hidden attribute user
mnmn Sets hc

. should NOT know about (GEUGHITIIEE
Pre: 1 is a S - =" damw as the inval‘iant

assert type(h) == int
assert O <=hand h <24
self. hour =d

10/30/25 Using Classes Effectively

32

Encapsulation and Specifications

class Time(object):

"""Class to represent times of day. """ No ?“fibutes }
in class spec

##+# Hidden attributes

Att _hour: hour of the day ng:ii(;?;n ;ﬁe
Inv: _hour is anint in 0..23 | class invariant
Att _min: minute of the hour | butnot part of the
Inv: min is an int in 0..59 (public) interface

These comments
do not go 1n help()

10/30/25 Using Classes Effectively 33

Class Invariant vs Interface

Class Invariant Interface

 List attributes that are present * Describes what is accessible

* Both hidden AND unhidden = Unhidden methods/attribs
= Lists the invariants of each = What is visible in help()
* For the implementer * For user/other programmers
= Guide for the 1nitializer = Enough to create an object
= Guide for method definitions * Enough to call the methods

Early years of CS1110

confused these two topics

10/30/25 Using Classes Effectively 34

Mutable vs. Immutable Attributes

Mutable

Immutable

* (Can change value directly « (Can’t change value directly

= [f class invariant met

= Example: turtle.color

= May change “behind scenes”

= Example: turtle.x

« Has both getters and setters * Has only a getter

= Setters allow you to change = No setter means no change

= Enforce invariants w/ asserts

May ask you to differentiate on the exam

Using Classes Effectively

10/30/25

= QGetter allows limited access

35

Mutable vs. Immutable Attributes

Mutable Immutable
* (Can change value directly * (Can’t change value directly
= [f class invariant met = May change “behind scenes”
= Example: turtle.color = Example: turtle.x

« Has both[getters and setters * Has only a getter

\
= Setters allow Where? } = No setter means no change

= Enforce invarl Next Thursday = Qetter allows limited access

May ask you to differentiate on the exam

10/30/25 Using Classes Effectively 36

