
Using Classes Effectively

Lecture 19

Announcements for Today

Assignments Optional Videos

• Videos 20.9-20.10 today
• Also Lesson 21 for today
• Lesson 22 for next time

10/30/25 Using Classes Effectively 2

• A4 should be done
§ But the survey is still open

• A5 to be posted tonight
§ Short written assignment
§ Due next Thursday

• A6 also posted tonight
§ Due November 14th
§ Follow the microdeadlines!
§ Get started on it first

Recall: The __init__ Method

def __init__(self, n, s, b):
 """Initializer: creates a Worker

 Has last name n, SSN s, and boss b

 Precondition: n a string,
 s an int in range 0..999999999,
 b either a Worker or None. """
 self.lname = n
 self.ssn = s
 self.boss = b

10/30/25 Using Classes Effectively 3

w = Worker('Obama', 1234, None)

id8

lname 'White'

ssn

boss

1234

None

Worker

Called by the constructor
two underscores

Recall: The __init__ Method

def __init__(self, n, s, b):
 """Initializer: creates a Worker

 Has last name n, SSN s, and boss b

 Precondition: n a string,
 s an int in range 0..999999999,
 b either a Worker or None. """
 self.lname = n
 self.ssn = s
 self.boss = b

10/30/25 Using Classes Effectively 4

w = Worker('Obama', 1234, None)
two underscores

Are there other
special methods
that we can use?

Example: Converting Values to Strings

str() Function

• Usage: str(<expression>)
§ Evaluates the expression
§ Converts it into a string

• How does it convert?
§ str(2) → '2'
§ str(True) → 'True'
§ str('True') → 'True'
§ str(Point3()) → '(0.0,0.0,0.0)'

repr() Function

• Usage: repr(<expression>)
§ Evaluates the expression
§ Converts it into a string

• How does it convert?
§ repr(2) → '2'
§ repr(True) → 'True'
§ repr('True') → "'True'"
§ repr(Point3()) →

"<class 'Point3'> (0.0,0.0,0.0)"
10/30/25 Using Classes Effectively 5

Example: Converting Values to Strings

str() Function

• Usage: str(<expression>)
§ Evaluates the expression
§ Converts it into a string

• How does it convert?
§ str(2) → '2'
§ str(True) → 'True'
§ str('True') → 'True'
§ str(Point3()) → '(0.0,0.0,0.0)'

repr() Function

• Usage: repr(<expression>)
§ Evaluates the expression
§ Converts it into a string

• How does it convert?
§ repr(2) → '2'
§ repr(True) → 'True'
§ repr('True') → "'True'"
§ repr(Point3()) →

"<class 'Point3'> (0.0,0.0,0.0)"
10/30/25 Using Classes Effectively 6

What type is
this value?

The value’s
type is clear

repr() is for
unambigious
representation

What Does str() Do On Objects?

• Does NOT display contents
>>> p = Point3(1,2,3)
>>> str(p)
'<Point3 object at 0x1007a90>'

• Must add a special method
§ __str__ for str()
§ __repr__ for repr()

• Could get away with just one
§ repr() requires __repr__
§ str() can use __repr__

(if __str__ is not there)

class Point3(object):
 """Class for points in 3d space"""
 …
 def __str__(self):
 """Returns: string with contents"""
 return '('+str(self.x) + ',' +
 str(self.y) + ',' +
 str(self.z) + ')'

 def __repr__(self):
 """Returns: unambiguous string"""
 return str(self.__class__)+
 str(self)

10/30/25 7Using Classes Effectively

What Does str() Do On Objects?

• Does NOT display contents
>>> p = Point3(1,2,3)
>>> str(p)
'<Point3 object at 0x1007a90>'

• Must add a special method
§ __str__ for str()
§ __repr__ for repr()

• Could get away with just one
§ repr() requires __repr__
§ str() can use __repr__

(if __str__ is not there)

class Point3(object):
 """Class for points in 3d space"""
 …
 def __str__(self):
 """Returns: string with contents"""
 return '('+str(self.x) + ',' +
 str(self.y) + ',' +
 str(self.z) + ')'

 def __repr__(self):
 """Returns: unambiguous string"""
 return str(self.__class__)+
 str(self)

10/30/25 8Using Classes Effectively

Gives the
class name

__repr__ using
__str__ as helper

Exercise: str and repr

class Example(object):
 """A simple class"""

 def __init__(self,x):
 self.x = x

 def __str__(self):
 return 'Value '+str(self.x)

 def __repr__(self):
 return 'Example['+str(x)+']'

>>> a = Example(3)
>>> str(a) # a.__str()__

10/30/25 Using Classes Effectively 9

What is the result?
A: '3'
B: 'Value 3'
C: 'Example[3]'
D: Error
E: I don’t know

Exercise: str and repr

class Example(object):
 """A simple class"""

 def __init__(self,x):
 self.x = x

 def __str__(self):
 return 'Value '+str(self.x)

 def __repr__(self):
 return 'Example['+str(x)+']'

>>> a = Example(3)
>>> str(a)

10/30/25 Using Classes Effectively 10

What is the result?
A: '3'
B: 'Value 3'
C: 'Example[3]'
D: Error
E: I don’t know

Exercise: str and repr

class Example(object):
 """A simple class"""

 def __init__(self,x):
 self.x = x

 def __str__(self):
 return 'Value '+str(self.x)

 def __repr__(self):
 return 'Example['+str(x)+']'

>>> a = Example(3)
>>> repr(a)

10/30/25 Using Classes Effectively 11

What is the result?
A: '3'
B: 'Value 3'
C: 'Example[3]'
D: Error
E: I don’t know

Exercise: str and repr

class Example(object):
 """A simple class"""

 def __init__(self,x):
 self.x = x

 def __str__(self):
 return 'Value '+str(self.x)

 def __repr__(self):
 return 'Example['+str(x)+']'

>>> a = Example(3)
>>> repr(a)

10/30/25 Using Classes Effectively 12

What is the result?
A: '3'
B: 'Value 3'
C: 'Example[3]'
D: Error
E: I don’t know

No self

• Type: set of values and the operations on them
§ int: (set: integers; ops: +, –, *, //, …)
§ Time (set: times of day; ops: time span, before/after, …)
§ Worker (set: all possible workers; ops: hire,pay,promote,…)
§ Rectangle (set: all axis-aligned rectangles in 2D;

 ops: contains, intersect, …)

• To define a class, think of a real type you want to make
§ Python gives you the tools, but does not do it for you
§ Physically, any object can take on any value
§ Discipline is required to get what you want

Designing Types From first
day of class!

10/30/25 Using Classes Effectively 13

Making a Class into a Type

1. Think about what values you want in the set
§ What are the attributes? What values can they have?

2. Think about what operations you want
§ This often influences the previous question

• To make (1) precise: write a class invariant
§ Statement we promise to keep true after every method call

• To make (2) precise: write method specifications
§ Statement of what method does/what it expects (preconditions)

• Write your code to make these statements true!

10/30/25 Using Classes Effectively 14

Planning out a Class
class Time(object):
 """Class to represent times of day.

 Inv: hour is an int in 0..23
 Inv: min is an int in 0..59"""

 def __init__(self, hour, min):
 """The time hour:min.
 Pre: hour in 0..23; min in 0..59"""

 def increment(self, hours, mins):
 """Move time hours and mins
 into the future.
 Pre: hours int >= 0; mins in 0..59"""

 def isPM(self):
 """Returns: True if noon or later."""

10/30/25 Using Classes Effectively 15

Class Invariant
States what attributes are present
and what values they can have.
A statement that will always be
true of any Time instance.

Method Specification
States what the method does.
Gives preconditions stating what
is assumed true of the arguments.

Planning out a Class
class Rectangle(object):
 """Class to represent rectangular region

 Inv: t (top edge) is a float
 Inv: l (left edge) is a float
 Inv: b (bottom edge) is a float
 Inv: r (right edge) is a float
 Additional Inv: l <= r and b <= t."""

 def __init__(self, t, l, b, r):
 """The rectangle [l, r] x [t, b]
 Pre: args are floats; l <= r; b <= t"""

 def area(self):
 """Return: area of the rectangle."""

 def intersection(self, other):
 """Return: new Rectangle describing
 intersection of self with other."""

Class Invariant
States what attributes are present
and what values they can have.
A statement that will always be
true of any Rectangle instance.

Method Specification
States what the method does.
Gives preconditions stating what
is assumed true of the arguments.

1610/30/25 Using Classes Effectively

Planning out a Class
class Rectangle(object):
 """Class to represent rectangular region

 Inv: t (top edge) is a float
 Inv: l (left edge) is a float
 Inv: b (bottom edge) is a float
 Inv: r (right edge) is a float
 Additional Inv: l <= r and b <= t."""

 def __init__(self, t, l, b, r):
 """The rectangle [l, r] x [t, b]
 Pre: args are floats; l <= r; b <= t"""

 def area(self):
 """Return: area of the rectangle."""

 def intersection(self, other):
 """Return: new Rectangle describing
 intersection of self with other."""

Class Invariant
States what attributes are present
and what values they can have.
A statement that will always be
true of any Rectangle instance.

Method Specification
States what the method does.
Gives preconditions stating what
is assumed true of the arguments.

1710/30/25 Using Classes Effectively

Special invariant relating
attributes to each other

Planning out a Class
class Hand(object):
 """Instances represent a hand in cards.

 Inv: cards is a list of Card objects.
 This list is sorted according to the
 ordering defined by the Card class."""

 def __init__(self, deck, n):
 """Draw a hand of n cards.
 Pre: deck is a list of >= n cards"""

 def isFullHouse(self):
 """Return: True if this hand is a full
 house; False otherwise"""

 def discard(self, k):
 """Discard the k-th card."""

Class Invariant
States what attributes are present
and what values they can have.
A statement that will always be
true of any Rectangle instance.

Method Specification
States what the method does.
Gives preconditions stating what
is assumed true of the arguments.

10/30/25 Using Classes Effectively 18

Implementing a Class

• All that remains is to fill in the methods. (All?!)
• When implementing methods:

1. Assume preconditions are true
2. Assume class invariant is true to start
3. Ensure method specification is fulfilled
4. Ensure class invariant is true when done

• Later, when using the class:
§ When calling methods, ensure preconditions are true
§ If attributes are altered, ensure class invariant is true

10/30/25 Using Classes Effectively 19

Implementing an Initializer

def __init__(self, hour, min):
 """The time hour:min.
 Pre: hour in 0..23; min in 0..59"""

You put code here

This is true to start

This should be true
at the end

self.hour = hour
 self.min = min

Inv: hour is an int in 0..23
 Inv: min is an int in 0..59

10/30/25 Using Classes Effectively 20

Inv: hour is an int in 0..23
 Inv: min is an int in 0..59

Implementing a Method

def increment(self, hours, mins):
 """Move this time <hours> hours

and <mins> minutes into the future.
 Pre: hours [int] >= 0; mins in 0..59"""

You put code here

This is also true to start

This should be true
at the end

self.min = self.min + mins
 self.hour = self.hour + hours

This is true to start
What we are supposed
to accomplish

Inv: hour is an int in 0..23
 Inv: min is an int in 0..59

?

10/30/25 Using Classes Effectively 21

Implementing a Method

def increment(self, hours, mins):
 """Move this time <hours> hours

and <mins> minutes into the future.
 Pre: hours [int] >= 0; mins in 0..59"""

You put code here

This is also true to start

self.min = self.min + mins
 self.hour = (self.hour + hours +
 self.min // 60)
 self.min = self.min % 60
 self.hour = self.hour % 24

What we are supposed
to accomplish

10/30/25 Using Classes Effectively 22

Inv: hour is an int in 0..23
 Inv: min is an int in 0..59

This should be true
at the end

Inv: hour is an int in 0..23
 Inv: min is an int in 0..59

Object Oriented Design

Interface

• How the code fits together
§ interface btw programmers
§ interface btw parts of an app

• Given by specifications
§ Class spec and invariants
§ Method specs and preconds
§ Interface is ALL of these

Implementation

• What the code actually does
§ when create an object
§ when call a method

• Given by method definitions
§ Must meet specifications
§ Must not violate invariants
§ But otherwise flexible

10/30/25 Using Classes Effectively 23

Important concept for making
large software systems

Implementing a Class

• All that remains is to fill in the methods. (All?!)
• When implementing methods:

1. Assume preconditions are true
2. Assume class invariant is true to start
3. Ensure method specification is fulfilled
4. Ensure class invariant is true when done

• Later, when using the class:
§ When calling methods, ensure preconditions are true
§ If attributes are altered, ensure class invariant is true

10/30/25 Using Classes Effectively 24

Recall: Enforce Preconditions with assert

def anglicize(n):
 """Returns: the anglicization of int n.

 Precondition: n an int, 0 < n < 1,000,000"""
 assert type(n) == int, str(n)+' is not an int'
 assert 0 < n and n < 1000000, repr(n)+' is out of range'
 # Implement method here…

Check (part of)
the precondition

(Optional) Error message
when precondition violated

10/30/25 Using Classes Effectively 25

Enforce Method Preconditions with assert
class Time(object):
 """Class to represent times of day."""

 def __init__(self, hour, min):
 """The time hour:min.
 Pre: hour in 0..23; min in 0..59"""
 assert type(hour) == int
 assert 0 <= hour and hour < 24
 assert type(min) == int
 assert 0 <= min and min < 60

 def increment(self, hours, mins):
 """Move this time <hours> hours
 and <mins> minutes into the future.
 Pre: hours is int >= 0; mins in 0..59""”
 assert type(hour) == int
 assert type (min) == int
 assert hour >= 0
 assert 0 <= min and min < 60

Inv: hour is an int in 0..23
 Inv: min is an int in 0..59"""

Initializer creates/initializes all
of the instance attributes.
Asserts in initializer guarantee the
initial values satisfy the invariant.

Asserts in other methods enforce
the method preconditions.

10/30/25 Using Classes Effectively 26

Hiding Methods From Access

• Hidden methods
§ start with an underscore
§ do not show up in help()
§ are meant to be internal

(e.g. helper methods)
• But they are not restricted

§ You can still access them
§ But this is bad practice!
§ Like a precond violation

• Can do same for attributes
§ Underscore makes it hidden
§ Only used inside of methods

class Time(object):
 """Class to represent times of day.

 Inv: hour is an int in 0..23
 Inv: min is an int in 0..59"""

 def _is_minute(self,m):
 """Return: True if m valid minute"""
 return (type(m) == int and
 m >= 0 and m < 60)

 def __init__(self, hour, min):
 """The time hour:min.
 Pre: hour in 0..23; min in 0..59"""
 assert self._is_minute(m)
 …

10/30/25 Using Classes Effectively 27
Helper

Hiding Methods From Access

• Hidden methods
§ start with an underscore
§ do not show up in help()
§ are meant to be internal

(e.g. helper methods)
• But they are not restricted

§ You can still access them
§ But this is bad practice!
§ Like a precond violation

• Can do same for attributes
§ Underscore makes it hidden
§ Only used inside of methods

class Time(object):
 """Class to represent times of day.

 Inv: hour is an int in 0..23
 Inv: min is an int in 0..59"""

 def _is_minute(self,m):
 """Return: True if m valid minute"""
 return (type(m) == int and
 m >= 0 and m < 60)

 def __init__(self, hour, min):
 """The time hour:min.
 Pre: hour in 0..23; min in 0..59"""
 assert self._is_minute(m)
 …

10/30/25 Using Classes Effectively 28
Helper

HIDDEN

Will come back to this

Enforcing Invariants

class Time(object):
 """Class to repr times of day.

 Inv: hour is an int in 0..23
 Inv: min is an int in 0..59
 """

• These are just comments!
>>> t = Time(2,30)
>>> t.hour = 'Hello'

• How do we prevent this?

• Idea: Restrict direct access
§ Only access via methods
§ Use asserts to enforce them

• Example:
def getHour(self):
 """Returns: the hour"""
 return self.hour

def setHour (self,value):
 """Sets hour to value"""
 assert type(value) == int
 assert value >= 0 and value < 24
 self.numerator = value

Invariants:
Properties that

are always true.

10/30/25 Using Classes Effectively 29

Data Encapsulation

• Idea: Force the user to only use methods
• Do not allow direct access of attributes

Setter Method
• Used to change an attribute
• Replaces all assignment

statements to the attribute
• Bad:

>>> t.hour = 5
• Good:

>>> t.setHour(5)

Getter Method
• Used to access an attribute
• Replaces all usage of

attribute in an expression
• Bad:

>>> x = 3*t.hour
• Good:

>>> x = 3*t.getHour()
10/30/25 Using Classes Effectively 30

Data Encapsulation

class Time(object):
 """Class to repr times of day. """

 def getHour (self):
 """Returns: hour attribute"""
 return self._hour

 def setHour(self, h):
 """ Sets hour to h
 Pre: h is an int in 0..23"""
 assert type(h) == int
 assert 0 <= h and h < 24
 self._hour = d

Setter precondition is
same as the invariant

10/30/25 Using Classes Effectively 31

Getter

Setter

NO ATTRIBUTES
in class specification

Method specifications
describe the attributes

Data Encapsulation

class Time(object):
 """Class to repr times of day. """

 def getHour (self):
 """Returns: hour attribute"""
 return self._hour

 def setHour(self, h):
 """ Sets hour to h
 Pre: h is an int in 0..23"""
 assert type(h) == int
 assert 0 <= h and h < 24
 self._hour = d

Setter precondition is
same as the invariant

10/30/25 Using Classes Effectively 32

Getter

Setter

NO ATTRIBUTES
in class specification

Method specifications
describe the attributes

Hidden attribute user
should NOT know about

Encapsulation and Specifications

class Time(object):
 """Class to represent times of day. """

 ### Hidden attributes
 # Att _hour: hour of the day
 # Inv: _hour is an int in 0..23
 # Att _min: minute of the hour
 # Inv: _min is an int in 0..59

10/30/25 Using Classes Effectively 33

No attributes
in class spec

These comments
 make it part of the
 class invariant
 but not part of the
 (public) interface

These comments
do not go in help()

Class Invariant vs Interface

Class Invariant

• List attributes that are present
§ Both hidden AND unhidden
§ Lists the invariants of each

• For the implementer
§ Guide for the initializer
§ Guide for method definitions

Interface

• Describes what is accessible
§ Unhidden methods/attribs
§ What is visible in help()

• For user/other programmers
§ Enough to create an object
§ Enough to call the methods

10/30/25 Using Classes Effectively 34

Early years of CS1110
confused these two topics

Mutable vs. Immutable Attributes

Mutable

• Can change value directly
§ If class invariant met

§ Example: turtle.color

• Has both getters and setters
§ Setters allow you to change

§ Enforce invariants w/ asserts

Immutable

• Can’t change value directly
§ May change “behind scenes”

§ Example: turtle.x

• Has only a getter
§ No setter means no change

§ Getter allows limited access

10/30/25 Using Classes Effectively 35

May ask you to differentiate on the exam

Mutable vs. Immutable Attributes

Mutable

• Can change value directly
§ If class invariant met

§ Example: turtle.color

• Has both getters and setters
§ Setters allow you to change

§ Enforce invariants w/ asserts

Immutable

• Can’t change value directly
§ May change “behind scenes”

§ Example: turtle.x

• Has only a getter
§ No setter means no change

§ Getter allows limited access

10/30/25 Using Classes Effectively 36

Where?
Next Thursday

May ask you to differentiate on the exam

