What Does str() Do On Objects?

* Does NOT display contents class Point3(object):
>>>p= Point5(1,2,3) """Class for points in 3d space""
>>> gtr(p)
'<Point3 object at 0x1007a90>'
* Must add a special method
= _ str__ forstrQ) str(self.y) + ', +
= _ pepr__for repr() str(self.z) +")'
* Could get away with just one
= repr() requires __repr__

def __str__(self):
"""Returns: string with contents"""
return '('+ste(self.x) + ') +

def __repr__(self):
"""Returns: unambiguous string"""
= str() can use __repr__ return ste(self.__class__)+

(if __str__ is not there) str(self)

10/26/25

Making a Class into a Type

—

. Think about what values you want in the set

= What are the attributes? What values can they have?
2. Think about what operations you want
= This often influences the previous question

To make (1) precise: write a class invariant
= Statement we promise to keep true after every method call

To make (2) precise: write method specifications
= Statement of what method does/what it expects (preconditions)

» Write your code to make these statements true!

Implementing an Initializer

Planning out a Class
class Time(object): N
""Class to represent times of day. Class Invariant
Inv: hour is an int in 0.25 States what attributes are present
Inv: min is an int in 0..59""" and what values they can have.
o) A statement that will always be
def __init__(self, hour, min): true of any Time instance.
"""The time hour:min.
Pre: hour in 0..23; min in 0..59"""
def incremegt(self, hours, mi.ns): Method Speciﬁcation
"""Move time hours and mins
into the future. } States what the method does.
Pre: hours int >= 0; mins in 0..59""" Gives preconditions stating what
is assumed true of the arguments.
def isPM(self):
"""Returns: True if noon or later."""

def __init__(self, hour, min):
"""The time hour:min.

Pre: hour in 0..23; min in 0..59"" ¢————— This is true to start

self.hour = hour
self.min = min

You put code here

This should be true
at the end

Inv: hour is an int in 0..23
Inv: min is an int in 0..59

Implementing a Method

Inv: hour is an int in 0..23
Inv: min is an int in 0..59

This is true to start

‘What we are supposed
def increment(self, hours, mins): L—"t0 accomplish
"""Move this time <hours> hours <«
and <mins> minutes into the future. L.
Pre: hours [int] >= 0; mins in 0..59"" €= This is also true to start

self.min = self.min + mins
self.hour = self.hour + hours .

You put code here

This should be true
at the end

Inv: hour is an int in 0..23
Inv: min is an int in 0..59

Enforce Method Preconditions with assert

class Time(object):
"""Class to represent times of day."""

Inv: hour is an int in 0..23
Inv: min is an int in 0..59"""

def __init__(self, hour, min):
""The time hour:min.
Pre: hour in 0..23; min in 0..59""
assert type(hour) == int
assert 0 <= hour and hour < 24
assert type(min) == int
assert 0 <= min and min < 60

Initializer creates/initializes all

of the instance attributes.

Asserts in initializer guarantee the
initial values satisfy the invariant.

def increment(self, hours, mins):

‘ """Move this time <hours> hours
and <mins> minutes into the future.
Pre: hours is int >= 0; mins in 0..59""”

assert type(hour) == int -
assert type (min) == int Asserts in other methods enforce

assert hour >= 0 the method preconditions.

assert 0 <= min and min < 60

Hiding Methods From Access

* Hidden methods

= start with an underscore

class Time(object):
"""Class to represent times of day.

Inv: hour is an int in 0..23

. .
do not show up in help() Inv: min is an int in 0..59"""

= are meant to be internal
(e.g. helper methods)

* But they are not restricted

def _is_minute(self,m):
"""Return: True if m valid minute""
return (type(m) == int and
m>=0and m < 60)

* You can still access them
= But this is bad practice!
= Like a precond violation
p v X ef __init__(self, hour, min):
* Can do same for attributes ""The time hour:min.
Pre: hour in 0..23; min in 0..59"""

assert self._is

= Underscore makes it hidden

= Only used inside of methods

Data Encapsulation

* Idea: Force the user to only use methods
* Do not allow direct access of attributes

Setter Method Getter Method

* Used to change an attribute » Used to access an attribute
» Replaces all assignment Replaces all usage of
statements to the attribute attribute in an expression
* Bad: e Bad:
>>>t.hour = 5 >>>x = 8*t.hour
¢ Good: ¢ Good:
>>> f.getHour(5) >>> x = 3*t.getHour()

Encapsulation and Specifications

class Time(object):

"""Class to represent times of day. "
1n class spec

##+# Hidden attributes These comments
Att _hour: hour of the day make it part of the
Inv: hour is an int in 0..23 class invariant
Att _min: minute of the hour | Dutnotpartof the
Inv: _min is an int in 0..59 (public) interface

These comments
do not go in help()

Enforcing Invariants

class Time(object):
""Class to repr times of day. = Only access via methods

Inv:/hour is an int in 0..23 = Use asserts to enforce them
Inv{min is an int in 0..59 * Example:
def getHour(self):
‘ """Returns: the hour"""
- return self.hour

* These are just comments!
>>>t, = Time(R,30)
>>> t.hour = 'Hello'

 Idea: Restrict direct access

def setHour (self,value):
"""Sets hour to value""
assert type(value) == int
assert value >= 0 and value < 24
self.numerator = value

* How do we prevent this?

Data Encapsulation

class Time(object):
"""Class to repr times of day. """

NO ATTRIBUTES

in class specification

def getHour (self): - "
m ‘ W Returns: hour atbribute™ Method specifications

return self._hour describe the attributes

def setHour(self, h):
" Sets hour t0 h } Setter precondition is
Pre: his an int in 0..23""
assert type(h) == int
assert 0 <=hand h <24
self._hour =d

same as the invariant

10
Mutable vs. Immutable Attributes
Mutable Immutable
 Can change value directly » Can’t change value directly

= If class invariant met = May change “behind scenes”

= Example: turtle.color = Example: turtle.x
* Has both getters and setters * Has only a getter
= Setters allow you to change = No setter means no change

= Enforce invariants w/ asserts = Getter allows limited access

May ask you to differentiate on the exam

11

12

