
10/26/25

1

Recall: Objects as Data in Folders

• An object is like a manila folder
• It contains other variables

§ Variables are called attributes
§ Can change values of an attribute

(with assignment statements)
• It has a “tab” that identifies it

§ Unique number assigned by Python
§ Fixed for lifetime of the object

id2

x 2.0

y 3.0

z 5.0

Unique tab
identifier

1

Classes Have Folders Too

Object Folders

• Separate for each instance

Class Folders

• Data common to all instances

id2

x 2.0

y 3.0

z 5.0

Point3
id3

x 5.0

y 7.2

z -0.5

Point3

Point3

????

2

Name Resolution for Objects

• ⟨object⟩.⟨name⟩ means
§ Go the folder for object
§ Find attribute/method name
§ If missing, check class folder
§ If not in either, raise error

• What is in the class folder?
§ Data common to all objects
§ First must understand the

class definition

id3

x 5.0
y 2.0
z 3.0

id3p

Point3

Point3

id4

x 7.4
y 0.0
z 0.0

id4q

Point3

????

3

The Class Definition

class <class-name>(object):

 """Class specification"""

 <function definitions>

 <assignment statements>

 <any other statements also allowed>

Goes inside a
module, just

like a function
definition.keyword class

Beginning of a
class definition

more on this later
Specification
(similar to one
for a function)

Do not forget the colon!

to define
methods

…but not often used

to define
attributes

class Example(object):
 """The simplest possible class."""
 pass

Example

Python creates
after reading the
class definition

4

Instances and Attributes

• Assignments add object attributes
§ <object>.<att> = <expression>
§ Example: e.b = 42

• Assignments can add class attributes
§ <class>.<att> = <expression>
§ Example: Example.a = 29

• Objects can access class attributes
§ Example: print e.a
§ But assigning it creates object attribute
§ Example: e.a = 10

• Rule: check object first, then class

id2
id2e

Example

Example

42b

29a

10a

5

The Class Specification

class Worker(object):
 """A class representing a worker in a certain organization

 Instance has basic worker info, but no salary information.

 Attribute lname: The worker last name
 Invariant: lname is a string

 Attribute ssn: The Social Security number
 Invariant: ssn is an int in the range 0..999999999

 Attribute boss: The worker's boss
 Invariant: boss is an instace of Worker, or None if no boss"""

Description

Invariant

Short
summary

More
detail

6

10/26/25

2

Method Definitions

• Looks like a function def
§ Indented inside class
§ First param is always self
§ But otherwise the same

• In a method call:
§ One less argument in ()
§ Obj in front goes to self

• Example: a.distance(b)

1. class Point3(object):
2. """Class for points in 3d space
3. Invariant: x is a float

4. Invariant y is a float
5. Invariant z is a float """
6. def distance(self,q):
7. """Returns dist from self to q
8. Precondition: q a Point3"""
9. assert type(q) == Point3
10. sqrdst = ((self.x-q.x)**2 +
11. (self.y-q.y)**2 +
12. (self.z-q.z)**2)
13. return math.sqrt(sqrdst)

self q

7

Methods Calls

• Example: a.distance(b) 1. class Point3(object):
2. """Class for points in 3d space
3. Invariant: x is a float

4. Invariant y is a float
5. Invariant z is a float """
6. def distance(self,q):
7. """Returns dist from self to q
8. Precondition: q a Point3"""
9. assert type(q) == Point3
10. sqrdst = ((self.x-q.x)**2 +
11. (self.y-q.y)**2 +
12. (self.z-q.z)**2)
13. return math.sqrt(sqrdst)

id2
Point3

id3b

x 1.0

y

z

2.0

3.0

id3
Point3

x 0.0

y

z

3.0

-1.0

id2a

distance 9

id3q

id2self

8

Methods and Folders

• Function definitions…
§ make a folder in heap
§ assign name as variable
§ variable in global space

• Methods are similar...
§ Variable in class folder
§ But otherwise the same

• Rule of this course
§ Put header in class folder
§ Nothing else!

1. class Point3(object):
2. """Class for points in 3d space
3. Invariant: x is a float
4. Invariant y is a float
5. Invariant z is a float """
6. def distance(self,q):
 ….

distance(self,q)

Point3

9

Special Method: __init__

def __init__(self, n, s, b):
 """Initializes a Worker object

 Has last name n, SSN s, and boss b

 Precondition: n a string,
 s an int in range 0..999999999,
 b either a Worker or None. """
 self.lname = n
 self.ssn = s
 self.boss = b

w = Worker('White', 1234, None)

id8

lname 'White'

ssn

boss

1234

None

Worker

Called by the constructordon’t forget self

two underscores

use self to assign attributes

10

Evaluating a Constructor Expression

Worker('White', 1234, None)

1. Creates a new object (folder)
of the class Worker
§ Instance is initially empty

2. Puts the folder into heap space
3. Executes the method __init__

§ Passes folder name to self
§ Passes other arguments in order
§ Executes the (assignment)

commands in initializer body
4. Returns the object (folder) name

id8

lname 'White'

ssn

boss

1234

None

Worker

11

Making Arguments Optional

• We can assign default values
to __init__ arguments
§ Write as assignments to

parameters in definition
§ Parameters with default

values are optional
• Examples:

§ p = Point3() # (0,0,0)
§ p = Point3(1,2,3) # (1,2,3)
§ p = Point3(1,2) # (1,2,0)
§ p = Point3(y=3) # (0,3,0)
§ p = Point3(1,z=2) # (1,0,2)

1. class Point3(object):
2. """Class for points in 3d space
3. Invariant: x is a float

4. Invariant y is a float
5. Invariant z is a float """
6.
7. def __init__(self,x=0,y=0,z=0):
8. """Initializes a new Point3
9. Precond: x,y,z are numbers"""
10. self.x = x
11. self.y = y
12. self.z = z
13. …

12

