10/19/25

Key-Value Pairs

Basic Syntax

¢ The last built-in type: dictionary (or dict)
= One of the most important in all of Python
= Like a list, but built of key-value pairs
» Keys: Unique identifiers
= Think social security number
= At Cornell we have netids: jrs1
* Values: Non-unique Python values
= John Smith (class *13) is jrs1 Idea: Lookup
= John Smith (class 16) is jrs2 values by keys

¢ Create with format: {kl:vl, k2:v2, ...}

= Both keys and values must exist

= Ex: d={‘jrs1"'John',jrsR"'John', wmw".'Walker'}
» Keys must be non-mutable

= ints, floats, bools, strings, tuples

= Not lists or custom objects

= Changing a key’s contents hurts lookup
* Values can be anything

Using Dictionaries (Type dict)

Dictionaries Can be Modified

e Access elts. like a list d = {js1""'John','jsQ"'John’,
= d['jrs1'] evals to 'John’ '‘wmwgR';'Walker'}
= d['jrs?'] does too s Pl
1

= d['wmw?&'] evals to 'Walker'
= d['abcl'lis an error -
st

» Can test if a key exists
—
= 'jrs]’ in d evals to True ' Jrsay
= ‘abcl' in d evals to False o e
* But cannot slice ranges! Key-Value order in
folder is not important

+ Can reassign values
d = {!jrs1"'John',jrsR"'John’,

'‘wmwgR':'Walker'}

¢ [ias |

= d['jrsl'] = 'Jane’
= Very similar to lists

+ Can add new keys id8
= d[‘aaal'] = 'Allen’
= Do not think of order Jralt
jes2 | 'dohn'
* Can delete keys :;;2
iz [wabr
= del d['wmw?&’] naal

= Deletes both key, value

Dictionaries: Iterable, but not Sliceable

forkind:
Loops over keys

print(k) # key
u
Use key to access value print(dlk]) # value

 Can loop over a dict
= Only gives you the keys

» Can iterate over values # To loop over values only
= Method: d.values() for v in d.values(:
rint(v # value
= But no way to get key ‘ print(y)
= Values are not unique

Dictionary Loop with Accumulator

def max_grade(grades):
""Returns max grade in the grade dictionary

Precondition: grades has netids as keys, ints as values™"
maximum = 0 # Accumulator
Loop over keys
for k in grades:
if grades{k] > maximum:
‘ maximum = grades(k]

return maximum

Dictionaries and Mutable Functions

10/19/25

* Restrictions are different than list
= Okay to loop over dictionary to change
= You are looping over keys, not values
= Like looping over positions
* But you may not add or remove keys!

= Any attempt to do this will fail

= Have to create a key list if you want this

But This is Okay

def add_bonus(grades,bonus):
""Gives bonus points to everyone in grades

Precondition: grades has netids as keys, ints as values.
bonus is an int.""
No accumulator. This is a procedure

or student in grades:
Modifies the dictionary, but does not change keys
grades[student] = grades[student]+bonus

Nesting Dictionaries

* Remember, values can be anything
= Only restrictions are on the keys
* Values can be lists (Visualizer)
=d = {"a"[1,3], D"[3,4]}
* Values can be other dicts (Visualizer)
= d={"a"{'c"1,'d"R}, 'b":{'e"3,'{ 4} }
* Access rules similar to nested lists
= Example: d['a']['d'] = 10

Example: JSON File

{ "ind" : { Nested * JSON: File w/ Python dict
"speed” : 13.0, Dictionary = Actually, minor differences

"crosswind" : 5.0

L ¢ weather.json:

"sky": [= Weather measurements
"eover” : "clouds, at Ithaca Airport (2017)
"type" : "broken", = Keys: Times (Each hour)

) "height" : 12000 = Values: Weather readings
¢ * This is a nested JSON

"type" : "overcast", .. .
P = Values are also dictionaries

"height" : 1800.Q
} = Containing more dictionaries
)] IDIEGTET) = And also containing lists

Dictionaries and Recursion

10

* Dictionaries are not sliceable

= Makes it difficult to do divide and conquer

= So rare to be used in recursion by itself

= Often the answer to a recursion, not the input
* However, the key list is sliceable

= Can recurse on key list, not the dict

= This requires a helper function

= Helper is recursive, not the main function

The Recursive Version

def max_grade_helper(netids,grades):
"""Returns max grade among given netids

Precond: netids a list of keys in grades, grades a dict w/ int values""
Process small data

if len(netids) <= 1:
return grades[netids[0]] if len(netids) == 1 else 0

Break it up into left and right
left = grades[netids[0]]
right = max_grade_helper(netids[1:],grades)

Combine the answers
return max(left,right)

11

12

